
Policy-based Access Control
for Task Computing

Using Rei
Ryusuke Masuoka1, Mohinder Chopra1,

Yannis Labrou1, Zhexuan Song1,
Wei-lun Chen1, Lalana Kagal2, Tim Finin2

Fujitsu Labs of America1 and UMBC2

May 10th, 2005

Outline
Task Computing
Rei
Policy-based Access Control
Summary

Task Computing (TC)
Lets end-users accomplish complex tasks on the fly

With an open, dynamic, and distributed “universe of network-
accessible resources” in ubiquitous computing environments
and on the Internet

Developed jointly Fujitsu Labs and MINDSwap of Univ. of
Maryland and being productized by Fujitsu
Based on Semantic Web technologies – OWL, OWL-S
Many kinds of TC Clients

STEER-XT (Full client), Voice, Graphical, Gesture, etc.
Internationalized with eight languages
To accommodate many modalities with help of semantics

Semantic Services – Building blocks for user’s task
50+ kinds of local, pervasive, and remote services
implemented
Use of third-party Web Services from Amazon, Google, Yahoo

TC Demo at the DevDay on Saturday (5/14)

OS/Application (.NET, etc.)

Jeff’s Video

Device (UPnP)
Video from DVVideo from DV

Web Services

Aerial Photo of Weather Info of
Add into OutlookDial

Play (Video)Play (Audio)

Open Save Print

View Contact from OutlookJeff’s Video

How TC Works
Service descriptions in OWL-S
Found through discovery
mechanisms

UPnP
Local file system
WS-based discovery

Lets the end-users manipulate
and execute tasks as service
compositions

OS/ApplicationDevices Web Pages

Aerial Photo of Weather Info of
Add into OutlookDial

Play (Video)Play (Audio)

Open Save Print

View Contact from Outlook

Play Jeff’s Video
Dial Contact from Outlook
Weather Info of FLA, CP
…

TC Clients

Tasklet TCC

STEER-XT Client

Graphical UI

VoiceSTEER

Device
Application

E-service

Service ServiceService

Semantic
Service

Description

Semantic
Service

Description

Discovery
Engine

Execution &
Execution Monitoring

Engine

Service
Composition

Engine

Management
Tools

Task
Computing

Client
Applications

Realization
Layer

Service
Layer

Middleware
Layer

Presentation
Layer

Content

Web-based
Client

Service

Semantic
Service

Description

Task Computing Environment

User

Web Service API

Semantic
Service

Description

TC Architecture

Policies for Task Computing
We define policies as norms of behavior

Describe ideal behavior (security, privacy, management, etc.)
Positive and negative authorizations & obligations
Policies are defined over ‘classes’ of entities and actions defined
by constraints on attributes of the action, actor, target, and the
general context – not just on identities

Useful for Task Computing
Presence of large number of resources

Policies provide high-level control of entities in the environment

Resources and clients not predetermined
Policies are based on attributes and not identities

Constantly evolving
Policies allow the behavior of entities to be dynamically modified

A declarative policy specification language
Rules over permitted and obligated domain actions

Represented in OWL-Lite + logical variables
Rule-based approach
Increased expressivity as it can express relations
like role-value maps that are not currently possible
in RDF or OWL
OWL extension is subset of SWRL

Reasons over domain dependent information
in RDF and OWL

F-OWL reasoner

Rei Policy Spec Language

Rei Policy Spec Language

Policy Engine
Answers queries about policies and domain knowledge
Example : Can X perform action Y on resource Z ? What
are the current obligations of X ? What actions can X
perform on resource/service Z ? ….

Analysis tools
Verifying whether the given set of test cases is satisfied
Performing what-if analysis for testing the impact of
changes to policies or domain knowledge

Interface
Java API
Simple GUI in Protégé
GUI in Eclipse (under construction)

Motivations and Design Goals
TC apparently needs access control

It made it very easy to use dynamically found resources

Very dynamic and open ubiquitous environment
requires:

Rule-based approach, not identity- nor role-based
access control

Design goals
Minimally obtrusive for users

Without spoiling TC user experience

Enable both centralized/distributed solutions
Allow multiple certificate authorities
Secure dynamic delegation

Check-in
At the reception:

Digital Signaure

<!– Facts about the Person (Credential) -->
<rdf:RDF …>

<rdfs:label lang=en>Mohinder Chorpa</rdfs:label>
<flaonto:Name …>Mohinder Chorpa</flaonto:Name>
<flaonto:Expiry …>2004-08-23T23:05:28Z</flaonto:Expiry>
<flaonto:Status …>&flaonto;FLACPVisitor</flaonto:Status>
<flaonto:Affiliation …>UMBC</flaonto:Affiliation>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
…

</SignedInfo>
<SignatureValue>ZrbEVA7JWWGNbpqc…Jo6dDw=
</SignatureValue>

</Signature>
</rdf:RDF>

STEER + Credential STEER-Stick

Rei Engine

Web Service

Facts
Policies
Ontologies

Discovery, Invocation, Authentication
“Print” OWL-S discovered thru UPnP

OWL-S
Name: “Print”
Description: “Prints the given URL.”
Requires FLA Credential
…

Web Service Invocation with
FLA credential as a parameter

Approval/Reject

Success/Failure with reason

Client (STEER) Print Service

REI Engine

Consult REI Engine

Invoke Print with the
Credential (Facts) Download Print

Policies (private) Print Policies

Ontologies Sites
Download Required
Ontologies

Save Credential
(Facts)

Credential Creator

Mix and Match at the Service

Download FLA
Policies (shared)

FLA Policy Site

Facts in OWL

Policies in Rei/OWL

Ontologies in OWL

Delegation

Print Service

Download FLA
Policies (shared)

FLA Policy Site

Delegation Manager

Add/remove delegations
as policy over secure
connection

Detects updated policy

<!– Fact from Task Computing client -->
<rdf:RDF …>

<rdfs:label lang=en>Mohinder Chopra</rdfs:label>
<flaonto:Name …>Mohinder Chopra</flaonto:Name>
<flaonto:Expiry …>2004-08-23T23:05:28Z</flaonto:Expiry>
<flaonto:Status …>&flaonto;FLACPVisitor</flaonto:Status>
<flaonto:Affiliation …>UMBC</flaonto:Affiliation>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

…
</SignedInfo>
<SignatureValue>ZrbEVA7JWWGNbpqc…Jo6dDw=</SignatureValue>

</Signature>
</rdf:RDF>

<!– Printer Private Policy -->
…
<deontic:Permission rdf:about="&flapolicy;right_to_be_printed_on“

policy:desc="All senior employees have the right to print">
<deontic:actor rdf:resource="&flapolicy;var1"/>
<deontic:action rdf:resource="&flapolicy;printing_in_conference"/>
<deontic:constraint rdf:resource="&flapolicy;preOrSenior"/>

</deontic:Permission>
…

<!– Delegation Inserted (and Removed) in Shared Policy-->
<action:Delegation

rdf:ID=“Delegation2004-08-23T19:32:19ZRyusukeMasuoka">
<action:sender rdf:resource="&inst;RyusukeMasuoka"/>
<action:receiver rdf:resource="&inst;MohinderChorpa"/>
<action:content>
<deontic:Permission>

<deontic:action rdf:resource="&inst;ASeniorEmployeePrintingAction"/>
</deontic:Permission>

</action:content>
</action:Delegation>

Facts, Policies, Ontologies, Queries
Facts:

Mohinder is a FLACP Visitor
Policies (Private)

An employee can print
Policies (Shared)

A senior employee can delegate
the right to print (delegation)
Ryu delegates Mohinder the
right to print

Ontology
Ryu is a research fellow
A research fellow is a senior
employee

Queries
Can Mohinder print?

Other Scenarios
A senior employee gives to a class of users, the
right to use a class of resources.

User class: Ex. all visitors from UMBC on Jan 31st
Resource class: Ex. all devices in the conference room

Service policy check by client prior to invocation
Service policy in the OWL-S file

Multiple CA’s
Multiple CA’s listed in the OWL-S file
Client have multiple credentials

Design Goals Revisited
Minimally obtrusive for users
Enable both centralized/distributed
solutions
Allow multiple certificate authorities
Secure dynamic delegation

Summary
Unobtrusive and flexible access control for
Task Computing is implemented using Rei
policy engine
Future work

Discovery security
Service authentication by client

Service facts in the OWL-S file

Explanation and negotiation

