Tail Recursion

Problems with Recursion

* Recursion is generally favored over iteration in
Scheme and many other languages

It’s elegant, minimal, can be implemented with
regular functions and easier to analyze formally

* It can also be less efficient
more functional calls and stack operations (context
saving and restoration)
* Running out of stack space leads to failure
deep recursion

Tail recursion is iteration

* Tail recursion is a pattern of use that can be
compiled or interpreted as iteration, avoiding
the inefficiencies

* A tail recursive function is one where every
recursive call is the last thing done by the
function before returning and thus produces
the function’s value

Scheme’s top level loop

* Consider a simplified version of the REPL
(define (repl)
(printf “>“
(print (eval (read)))
(repl))

* This is an easy case: with no parameters there
is not much context

10/17/10

Scheme’s top level loop 2

* Consider a fancier REPL
(define (repl) (repl1 0))
(define (repll n)

(printf “~s>“n)
(print (eval (read)))
(repll (add1 n)))

* This is only slightly harder: just modify the
local variable n and start at the top

Scheme’s top level loop 3

* There might be more than one tail recursive call
(define (repl1 n)
(printf “~s> “ n)
(print (eval (read)))
(if(=n9)
(repl1 0)
(repl1 (add1 n))))
* What'’s important is that there’s nothing more
to do in the function after the recursive calls

Two skills

 Distinguishing a trail recursive call from

Naive recursive factorial

(define (factl n)
;; naive recursive factorial
(if (<n1)
1
(* n (factl (sub1 n)))))

10/17/10

Tail recursive factorial

(define (fact2 n)
; rewrite to just call the tail-recursive
; factorial with the appropriate initial values
(fact2-helper n 1))

(define (fact2-helper n accumulator)
; tail recursive factorial calls itself as
; last thing to be done

(if(<n1)
accumulator
(fact2-helper (sub1 n) (* accumulator n))))

Trace shows what’s |[(fact1 6)
: | (fact1 5)

going on | |(fact1 4)
> (require (lib "trace.ss")) | | (fact1 3)
> (load "fact.ss") | | [(fact1 2)
> (trace fact1) | |] (fact1 1)
> (factl 6) | || (fact1 0)

R

|11

|12

|6

| 124

| 120

|720

720

> (trace fact2 fact2-helper)
> (fact2 6) fa Ctz

| (fact2 6) * Interpreter & compiler note

| (fact2-helper 6 1) the last expression to be

| (fact2-helper 5 6) evaled & returned in fact2-
helper is a recursive call

| (fact2-helper 4 30)

* Instead of pushing state
| (fact2-helper 3 120) P g

on the sack, it reassigns
| (fact2-helper 2 360) the local variables and
| (fact2-helper 1 720)

jumps to beginning of the
| (fact2-helper 0 720) procedure
| 720 * Thus, the recursion is
automatically transformed
720 into iteration

Reverse a list

* This version works, but has two problems
(define (rev1 list)
; returns the reverse a list
(if (null? list)
empty
(append (revl (rest list)) (list (first list))))))
* Itis not tail recursive

* |t creates needless temporary lists

10/17/10

A better reverse

(define (rev2 list) (rev2.1 list empty))

(define (rev2.1 list reversed)
(if (null? list)
reversed
(rev2.1 (rest list)
(cons (first list) reversed))))

> (load "reverse.ss"
> (trace revl rev2 rev2.1)
>(revl'(abc))
[(revl (a bc))

| (revl (b c))

| [(revl(c))

| [(revi())

10

| {c)

| (cb)

[(cba)

(cba)

revl and rev2

> (rev2 '(abc))
|(rev2 (a b c))
|(rev2.1 (abc)())
|(rev2.1 (b c) (a))
|(rev2.1 (c) (b a))
|(rev2.1 () (c b a))
[(cba)

(cba)

>

The other problem

* Append copies the top level list structure of
it’s first argument.

* (append (12 3) ‘(4 5 6)) creates a copy of the
list (1 2 3) and changes the last cdr pointer to
point to the list (4 5 6)

* |n reverse, each time we add a new element
to the end of the list, we are (re-)copying the
list.

Append (two args only)

(define (append list1 list2)

(if (null? list1)
list2
(cons (first list1)

(append (rest list1) list2))))

10/17/10

Why does this matter?

* The repeated rebuilding of the reversed list is
needless work

* It uses up memory and adds to the cost of
garbage collection (GC)

* GC adds a significant overhead to the cost of
any system that uses it

* Experienced Lisp and Scheme programmers
avoid algorithms that needlessly consume
cons cells

Fibonacci

(define (fib n)
;; naive recurseive fibonacci function
(if (< n3)1(+(fib(-n1))(fib(-n2)))))

Run time for fib(n) = 0(2M

Fibonacci

(define (fib2 n) (if (<n3)1 (fib-tr3n11)))

(define (fib-tr n stop fib.n-2 fib.n-1)
(if (= n stop)
(+ fib.n-1 fib.n-2)
(fib-tr (+ 1 n) stop fib.n-1 (+ fib.n-1 fib.n-2))))

Run time for fib(n) £ 0(n)

10/17/10

