Tail Recursion




Problems with Recursion

* Recursion is generally favored over iteration in
Scheme and many other languages

It’s elegant, minimal, can be implemented with
regular functions and easier to analyze formally

* |t can also be less efficient

more functional calls and stack operations (context
saving and restoration)

* Running out of stack space leads to failure
deep recursion



Tail recursion is iteration

* Tail recursion is a pattern of use that can be
compiled or interpreted as iteration, avoiding
the inefficiencies

* A tail recursive function is one where every
recursive call is the last thing done by the
function before returning and thus produces
the function’s value



Scheme’s top level loop

* Consider a simplified version of the REPL
(define (repl)
(printf “> “

(print (eval (read)))

(repl))
* This is an easy case: with no parameters there
is not much context



Scheme’s top level loop 2

* Consider a fancier REPL
(define (repl) (repll 0))
(define (repll n)

(printf “~s> “ n)
(print (eval (read)))
(repll (add1 n)))

* This is only slightly harder: just modify the
local variable n and start at the top



Scheme’s top level loop 3

* There might be more than one tail recursive call
(define (repll n)
(printf “~s> “n)
(print (eval (read)))
(if (=n 9)
(repll 0)
(repll (add1 n))))

 What’s important is that there’s nothing more
to do in the function after the recursive calls



Two skills

* Distinguishing a trail recursive call from



Naive recursive factorial

(define (factl n)
;; haive recursive factorial
(if (<n 1)
1
(* n (factl (sub1l n)))))



Tail recursive factorial

(define (fact2 n)
; rewrite to just call the tail-recursive
; factorial with the appropriate initial values
(fact2-helper n 1))

(define (fact2-helper n accumulator)
: tail recursive factorial calls itself as
; last thing to be done

(if (< n 1)
accumulator
(fact2-helper (subl n) (* accumulator n))))



Trace shows what’s |(fact1 6)
: (fact1 5)
g0INg on (fact1 4)
> (require (lib "trace.ss")) (fact1 3)
> (load "fact.ss") (fact1 2)
> (trace factl) (fact1 1)
> (factl 6) I(1fact1 0)
1
2
6
24
120
720

720



> (trace fact2 fact2-helper)

> (fact2 6) fa Ctz

(fact2 6) « Interpreter & compiler note
(fact2-helper 6 1) the last expression to be
(fact2-helper 5 6) evaled & returned in fact2-

helper is a recursive call
(fact2-helper 4 30)

* Instead of pushing state
(fact2-helper 3 120)

on the sack, it reassigns

(fact2-helper 2 360) the local variables and
(fact2-helper 1 720) jumps to beginning of the
(fact2-helper 0 720) procedure

720 * Thus, the recursion is

automatically transformed
720 into iteration



Reverse a list

* This version works, but has two problems
(define (revl list)
: returns the reverse a list
(if (null? list)
empty
(append (revl (rest list)) (list (first list))))))
* |tis not tail recursive

* |t creates needless temporary lists



A better reverse

(define (rev2 list) (rev2.1 list empty))

(define (rev2.1 list reversed)
(if (null? list)
reversed
(rev2.1 (rest list)
(cons (first list) reversed))))



(load "reverse.ss")

>
> (trace revl rev2 rev2.1) revj- d nd revz
> (revl '(a b c))

(revl (a b c)) > (rev2 '(a b c))

(revl (b c)) (rev2 (a b c))
(revl (c)) (rev2.1(abc)())
(revl ()) (rev2.1 (b c) (a))
() (rev2.1 (c) (b a))
(c) (rev2.1() (c b a))

(cb) (c b a)

(cba) (c b a)

(cba) >



The other problem

* Append copies the top level list structure of
it’s first argument.

e (append (12 3) (45 6)) creates a copy of the
ist (1 2 3) and changes the last cdr pointer to
nooint to the list (4 5 6)

* |In reverse, each time we add a new element

to the end of the list, we are (re-)copying the
list.




Append (two args only)

(define (append listl list2)
(if (null? list1)
list2
(cons (first list1)
(append (rest listl) list2))))



Why does this matter?

The repeated rebuilding of the reversed list is
needless work

It uses up memory and adds to the cost of
garbage collection (GC)

GC adds a significant overhead to the cost of
any system that uses it

Experienced Lisp and Scheme programmers
avoid algorithms that needlessly consume
cons cells



Fibonacci

(define (fib n)
» naive recurseive fibonacci function
(if (<n3)1(+(fib(-n 1)) (fib(-n2)))))

Run time for fib(n) £ 0(2M



Fibonacci

(define (fib2 n) (if (<n 3)1 (fib-tr3n11)))

(define (fib-tr n stop fib.n-2 fib.n-1)
(if (= n stop)
(+ fib.n-1 fib.n-2)
(fib-tr (+ 1 n) stop fib.n-1 (+ fib.n-1 fib.n-2))))

Run time for fib(n) £ 0(n)



