A Tasty dish? Haskell Curry!



Curried Functions

* Currying is a functional programming tech-
nique that takes a function of N arguments
and produces a related one where some of

the arguments are fixed

* In Scheme
— (define add1 (curry + 1))
— (define double (curry * 2))



A tasty dish?

Currying was named after the Mathematical
logician Haskell Curry (1900-1982)

Curry worked on combinatory logic ...

A technique that eliminates the need for
variables in mathematical logic ...

and hence computer programming!
— At least in theory

The functional programming language Haskell
is also named in honor of Haskell Curry




Functions in Haskell ) \—

In Haskell we can define g as a function that takes
two arguments of types a and b and returns a
value of type c like this:

—g:(a, b)->c

We can let f be the curried form of g by
—f=curryg

The function f now has the signhature
—fra->b->c

f takes an arg of type a & returns a function that
takes an arg of type b & returns a value of type ¢



Functions in Haskell

*All functions in Haskell are curried, i.e., all
Haskell functions take just single arguments.

*This is mostly hidden in notation, and is not
apparent to a new Haskeller

*Let's take the function div :: Int -> Int -> Int which
performs integer division

*The expression div 11 2 evaluatesto 5
*But it's a two-part process

—div 11 is evaled & returns a function of type Int -> Int
—That function is applied to the value 2, yielding 5



Currying in Scheme

* Scheme has an explicit built in function, curry,
that takes a function and some of its

arguments and returns a curried function
* For example:

— (define add1 (curry + 1))
— (define double (curry * 2))
* We could define this easily as:

(define (curry fun . args)

(lambda x (apply fun (append args x))))



Note on lambda syntax

* (lambda X (foo X)) is a way to define a lambda
expression that takes any number of
arguments

* |In this case X is bound to the list of the
argument values, e.g.:

> (define f (lambda x (print x)))
> f

#<procedure:f>

>(f12345)

(12345)
>



Simple example (a)
e Compare two lists of numbers pair wise:

(apply and (map<(0123)'(5678)))

 Note that (map<‘0123)'(5678))evaluates
to the list (#t #t #t #t)

* Applying and to this produces the answer, #t



Simple example (b)

* |s every number in a list positive?
(apply and (map<0' (567 8)))
e This is a nice idea, but will not work

map: expects type <proper list> as 2nd argument, given: 0; other
arguments were: #i<procedure:<> (56 7 8)

=== context ===
/Applications/PLT/collects/scheme/private/misc.ss:74:7

 Map takes a function and lists for each of its
arguments



Simple example (c)

Is every number in a list positive?

Use (lambda (x) (< 0 x)) as the function

(apply and (map (lambda (x) (<0 x)) '(5 6 7 8)))
This works nicely and gives the right answer

What we did was to use a general purpose,
two-argument comparison function (?<?) to
make a narrower one-argument one (0<?)



Simple example (d)

 Here’s where curry helps
(curry < 0) = (lambda (x) (< 0 x))
e So this does what we want
(apply and (map (curry < 0) '(5 6 7 8)))
— Currying < with O actually produces
(lambda x (apply < 0 x))
— So (curry < 0) takes one or more args, e.g.

((curry < 0) 10 20 30) => #t
((curry < 0) 10 20 5) => #f



A real world example

| wanted to adapt a Lisp example by Google’s
Peter Norvig of a simple program that
generates random sentences from a context
free grammar

It was written to take the grammar and start
symbol as global variables ®

| wanted to make this a parameter, but it made
the code more complex ® ®

Scheme’s curry helped solve this!



#lang scheme

cfgl.ss

;;; Thisis a simple ...

(define grammar
'"((S -> (NP VP) (NP VP) (NP VP) (NP VP) (S CONJ S))
(NP -> (ARTICLE ADJS? NOUN PP?))
(VP -> (VERB NP) (VERB NP) (VERB NP) VERB)
(ARTICLE -> the the the a a a one every)

(NOUN -> man ball woman table penguin student book
dog worm computer robot )

(PP -> (PREP NP))

(PP?->() () () () PP)
)



scheme> scheme Cfg 1.ss

Welcome to MzScheme v4.2.4 ... .

> (require "cfg1.ss") Session
> (generate 'S)

(a woman took every mysterious ball)

> (generate 'S)

(a blue man liked the worm over a mysterious woman)

> (generate 'S)

(the large computer liked the dog in every mysterious student in the
mysterious dog)

> (generate ‘NP)

(a worm under every mysterious blue penguin)
> (generate ‘NP)

(the book with a large large dog)



Five possible rewrites for a S:
80% of the time it => NP VP and

#lang scheme

;> This is a simple ... 20% of the time it is a conjoined
sentence, S CONJ S

(define grammar
'((S -> (NP VP) (NP VP) (NP VP) (NP VP) (S CONJ S))
(NP -> (ARTICLE ADJS? NOUN PP?))
(VP -> (VERB NP) (VERB NP) (VERB NP) VER} |- it iieiaiioelt

(ARTICLE -> the the the a a a one every (e-g, th_e' a) are
recognized by

(NOUN -> man ball woman table penguinsi .02 o0

dog worm computer robot ) heading a
ocrammar rule.
(PP -> (PREP NP)) () is like € in a rule, so
(PP?->() () () () PP) 80% of the time a PP?

) produces nothing and

20% a PP.



(define (generate phrase)
;; generate a random sentence

(cond ((list? phrase)
(apply append (map generate phrase)))
((non-terminal? phrase)

(generate (random-element (rewrites phrasejjjj

(else (list phrase))))

(define (non-terminal? x)
;; True iff x is a on-terminal in grammar

(assoc x grammary))

(define (rewrites non-terminal)
;; Return a list of the possible rewrites for non-terminal in grammar
(rest (rest (assoc non-terminal grammary))))

(define (random-element list)
;; returns a random top-level element from list
(list-ref list (random (length list))))




Parameterizing generate

* Let’s change the package to not use global
variables for grammar

* The generate function will take another
parameter for the grammar and also pass it to
non-terminal? and rewrites

 While we are at it, we’ll make both param-
eters to generate optional with appropriate
defaults



> (load "cfg2.ss") Cfg 2 .SS

> (generate)

(a table liked the blue robot) session

> (generate grammar 'NP)

(the blue dog with a robot)

> (define g2 '((S->(aSb)(aSb)(aSh)())))
> (generate g2)

(2aaaaabbbbbb)

> (generate g2)
(2aaaaaaaaaabbbbbbbbbbb)
> (generate g2)

()

> (generate g2)

(@aabb)



(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP))’ ))

(define default-start 'S)

(define (generate (grammar default-grammar) (phrase default-start))

;; generate a random sentence or phrase from grammar
(cond ((list? phrase)
(apply append (map generate phrase)))

((non-terminal? phrase grammar)

(generate grammar (random-eleme ites phrase grammar))))

(else (list phrase)))))

(define (non-terminal? x grammar)

;; True iff x is a on-terminal in grammar

(assoc x grammar))

(define (rewrites non-terminal grammar)
;; Return a list of the possible rewrites for non-terminal in grammar
(rest (rest (assoc non-terminal grammar))))




(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP)) ...))

(define default-start 'S) Cng.SS

(define (generate (grammar default-grammar) (phrase default-start))

;; generate a random sentence or phrase from grammar
(cond ((list? phrase)
(apply append (map generate phrase)))

((non-terminal? phrase gramma
(generate grammar (random-elemen ites phrase grammar))))

(else (list phrase)))))

(define (non-terminal? x grammar)
;; True iff x is a on-terminal in grammar
(assoc x grammar))

(define (rewrites non-terminal grammar)

;; Return a list of the possible rewrites for non-terminal in grammar
(rest (rest (assoc non-terminal grammar))))



(define default-grammar '((S -> (NP VP) (NP VP) (NP VP) (NP VP)) ...))

(define default-start 'S) Cng.SS

(define (generate (grammar default-grammar) (phrase default-start))

;; generate a random sentence or phrase from grammar
(cond ((list? phrase)
(apply append (map (curry generate grammar) phrase)))
((non-terminal? phrase grammar)
(generate grammar (random-element (rewrites phrase grammar))))
(else (list phrase)))))

(define (non-terminal? x grammar)
;; True iff x is a on-terminal in grammar
(assoc x grammar))

(define (rewrites non-terminal grammar)
;; Return a list of the possible rewrites for non-terminal in grammar
(rest (rest (assoc non-terminal grammar))))



Curried functions

e Curried functions have lots of applictions in
programming language theory

* The curry operator is also a neat trick in our
functional programming toolbox

* You can add them to Python and other
languages, if the underlying language has the
right support



