Continuations
in Scheme

Overview

* Control operators

e Concept of a continuation in a functional
programming language

e Scheme’s call/cc

Control operators

* Control operators manipulate the order of
program steps

* Examples: goto, if , loops, return, break, exit

* A pure functional programming language
typically only has one of these: if

— Well, scheme does have do

* Users can define many of their own control
operators with macros (e.g., via define-syntax)

e What about return?

Control in Scheme

* Why doesn’t Scheme have a return function?

 Maybe we don’t need it to indicate the normal
function return spots

(define (find-primel n)
;; returns the first prime 2 n
(if (prime? n) n (find-primel (add1 n))))

* But how about places where we want to “break
out” of a computation

(define (find-prime2 n)
;; returns first prine between n and n**2
(for-each
(lambda (x) (and (prime? x) (return x))
(integers n (* n n))))

Catch and Throw in Lisp

* Lisp introduced (in the 70’s) catch and throw to
give a non-local return capability

* It was a very useful generalization of return

* (throw <expr>) causes a return from the
nearest matching (catch <x>) found on stack

(defun foo-outer () (catch (foo-inner)))
(defun foo-inner () ... (if x (throw t)) ...)

* Both take an optional tag argument; (throw
‘foo) can be caught by (catch ‘foo) or (catch)

Scheme’s functional approach

* Scheme provides some primitive built-ins that
can create these and other control functions

e call-with-current-continuation is the main one

—typically also bound to call/cc

e call/cc provides a way to escape out of
computation to someplace higher on the stack

* |It’s used to create other powerful control
mechanisms, like co-routines and backtracking

e call/cc does this in a decidedly functional way

Continuation

* A continuation represents the “future” of a
computation at certain moment

* Consider the Scheme expression
(* (f1 expl) (f2 (f3 4) (f5 exp2)))
* The continuation of (f3 4) in that expression
is the function
(lambda (X) (* (f1 expl) (f2 X (f5 exp2))))
* The continuation ¢ of an expression e is a

function that awaits the value of e and
proceeds with the computation

Call/cc

e call/css takes a unary function f as its only
argument

* When called, it reifies the current continuation

as an object and applies fto it

example

> (for-each (lambda (x) (+ x x)) '(1 2 3))
> (for-each (lambda (x) (printf "~s " x)) (1 2 3))
>123>
> (call/cc
(lambda (exit)
(for-each
(lambda (x) (if (negative? x) (exit x) #f))
'(54 037 -3 245 19)) #t))

Implementing return

(define (search pred? Ist)
; returns first item in LST satisfying pred? or #f
(call/cc
(lambda (return)
(for-each
(lambda (item) (if (pred? item) (return item) #f))
|st)
#f)))

The return can be non-local

(define (treat item like-it)
; Call like-it with a custom argument when we like item
(if (good-item? item) (like-it 'fnord) #f))
(define good-item? odd?)
(define (search?2 treat Ist)
; Call treat with every item in Ist and a procedure to call
: when treat likes this item.
(call/cc
(lambda (return) (for-each (lambda (item) (treat item return))
|st)
#f)))

We can re-call continuations

> (define return #f)

>(+1
(call/cc (lambda (cont) (set! return cont) 2))
3)

6

> return cont is bound to a continuation

(i.e., unary function) that takes a
#<continuation> value x and computes (+ 1 x 3)

> (return 100)
104

re-call continuations 2

> (define a 1) (define b 2) (define c 3) (define return
#f)

> (define (add-abc)
(+ a (call/cc (lambda (cont) (set! return cont) b)) c))

> (add-abc) > (set! a 1000)

6 > (return 100)
> return 104
#<continuation> (set! c 999)

> (return 100)

> (return 100) 1100

104

Coroutines

* Coroutines are procedures that persist
after they exit and then can be re-entered

* They maintain their state in between calls

* They provide an alternative mechanism to
threads for interleaving two processes

* You can implement coroutines in Scheme
with continuations

Hefty and Superfluous

(define (hefty other) (define clock-positions
(let loop ((n 5)) '("Straight up.” "Quarter after."
(printf "Hefty: ~s\n" n) "Half past.” "Quarter til."))

(set! do-other (call/cc other))
(printf "Hefty (b)\n")

(define (superfluous other)

(let loop ()
(set! do-other (call/cc other)) (for-each
(printf "Hefty (c)\n") (lambda (graphic)
(set! do-other (call/cc other)) (printf "~s\n" graphic)
(if (>n 0) (loop (- n 1)) #f))) (set! other (call/cc other)))

clock-positions

(loop)))

Hefty and Superfluous

> (hefty superfluous)

Hefty: 5 Hefty (c)
"Straight up.” "Half past."
Hefty (b) Hefty: 0
"Quarter after." "Quarter til."
Hefty (c) Hefty (b)

"Half past.” "Straight up."
Hefty: 4 Hefty (c)
"Quarter til.” "Quarter after."

#f

Summary

* Continuations are a both weird and hard to
understand

* They’'re also expensive to implement and use

* Most languages choose to add those control
features (e.g., return, catch throw) that
programmers understand and want

* These are also added in Scheme via libraries

* But Scheme is mostly a PL for experimenting
with PLs and new PL ideas and features

