

• Implementing a language is a good way to
learn more about programming languages

• Interpreters are easier to implement than
compilers, in genera

• Scheme is a simple language, but also a
powerful one

• Implementing it first in Scheme allows us to
put off some of the more complex lower-level
parts, like parsing and data structures

• While focusing on higher-level aspects

• Simple syntax and semantics
• John McCarthy’s original Lisp had very

little structure:
• Procedures CONS, CAR, CDR, EQ and

ATOM
• Special forms QUOTE, COND, SET and

LAMBDA
• Values T and NIL
• The rest of Lisp can be built on this

foundation (more or less)

• We’ll look at an adaptation of the metacircular
evaluator for Scheme from Abelson and
Sussman’s book, the Structure and
Interpretation of Computer Programs (SICP)

• “A meta-circular evaluator is a special case of
a self-interpreter in which the existing facilities
of the parent interpreter are directly applied to
the source code being interpreted, without any
need for additional implementation. Meta-
circular evaluation is most common in the
context of homoiconic languages”.

• Homoiconicity is a property of some
programming languages
• From homo meaning the same and icon

meaning representation
• A programming language is homoiconic

if its primary representation for programs
is also a data structure in a primitive
type of the language itself

• We’ll not do all of Scheme, just enough
for you to understand the approach
• We can us the same approach when

writing an interpreter for Scheme in
Python
• Since the MCE requires mutable pairs,

we’ll run it in the R5RS dialect
• I’m still working on a version that can
run in the latest PLT scheme

• Scheme calls a cons cell a pair
• Lisp always had special functions to

change (aka destructively modify or
mutate) the components of a simple cons cell

• Can you detect a sentiment there?
• RPLACA (RePLAce CAr) was Lisp’s function

to replace the car of a cons cell with a new
pointer

• RPLACD (RePLAce CDr) clobbered the cons
cell’s cdr pointer

GL% clisp
...
[1]> (setq l1 '(a b))
(A B)
[2]> (setq l2 l1)
(A B)
[3]> (rplaca l2 'foo)
(FOO B)
[4]> l1
(FOO B)

[5]> l2
(FOO B)
[6]> (rplacd l1 '(2 3 4))
(FOO 2 3 4)
[7]> l1
(FOO 2 3 4)
[8]> l2
(FOO 2 3 4)

> (define l1 '(a b c d))

> l1
(a b c d)
> (set-car! l1 'foo)

> l1
(foo b c d)
> (set-cdr! l1 '(2 3))

> l1
(foo 2 3)

> (set-cdr! l1 l1)
> l1
#0=(foo . #0#)
> (cadr l1)
foo
> (caddr l1)
foo
> (cadddr l1)
foo

• Scheme removed set-car! and set-cdr! from
the language as of R6RS
• They played to their ideological base here
• Or maybe just eating their own dog food

• R6RS is the Revised **6 Report on the
Algorithmic Language Scheme

• R6RS does have a library, mutable-pairs,
provides a new datatype for a mutable pair
and functions for it
• mcons, mcar, mcdr, mlist, …set-mcar!, set-

mcdr!

• Some languages are created/promoted by a
company (e.g., Sun:Java, Microsoft:F#,
Apple:Objective C)

• But for a language to really be accepted, it
should be defined and maintained by the
community

• And backed by a well-defined standard
• That may be supported by a recognized

standards organizations (e.g., IEEE, ANSI,
W3C, etc)

• Scheme is standardized in the official
IEEE standard and via a de facto
standard called the Revisedn Report on
the Algorithmic Language Scheme
• Or RnRS
• Common versions:

• R5RS in 1998
• R6RS in 2007

> (define l1 (cons 1 (cons 2 empty)))
> l1
(1 2)
> (define m1 (mcons 1 (mcons 2

empty)))
> m1
{1 2}
> (car l1)
1
> (car m1)
. . car: expects argument of type

<pair>; given {1 2}

> (mcar m1)
1
> (set-car! l1 'foo)
. . reference to undefined identifier:
set-car!
> (set-mcar! l1 'foo)
. . set-mcar!: expects type <mutable-
pair> as 1st argument, given: (1 2);
other arguments were: foo
> (set-mcar! m1 'foo)
> m1
{foo 2}

• We’ll sketch out some rules to use in
evaluating an s-expession
• Then realize them in Scheme
• The only tricky part is representing an

environment: binding symbols to values
• Environments inherit from other
environments, so we’ll consider an
environment to be a set of frames

• We’ll start with a global environment

• An environment is just a list of frames
• The first frame is the current environment, the

second is the one it inherits from, the third is
the one the second inherits from, etc.

• The last frame is the global or top level
environment

• Self-Evaluating - Just return their value

• Numbers and strings are self
evaluating

• Symbol - Lookup closest binding and
return

• Raise an error if not found

Special forms are those that get evaluated in a
special, non-standard way

•  (quote X) – return X
•  (define X B) – bind X to evaluation of B
•  (lambda VARS BODY) - Make a procedure,

write down VARS and BODY, do not evaluate
•  (set! X Y) – find X binding name, eval Y and set

X to the return value
•  (if X Y Z) – eval X and then eval either Y or Z

• Primitive: (F . ARGS)
• Apply by magic...
• User-defined: (F . ARGS)

• Make a new environment frame
• Extend to procedures frame
• Bind arguments to formal parameters
• Evaluate procedure body in the new
frame

• Return its value

(define (scheme)

 (print '|> |)

 (print (mceval

 (read)

 the-global-environment))

 (scheme))

(define (mceval exp env)

 (cond ((self-evaluating? exp) exp)

 ((symbol? exp) (lookup exp env))

 ((special-form? exp)

 (do-something-special exp env))

 (else (mcapply (mceval (car exp) env)

 (map (lambda (e) (mceval e env))

 (cdr exp))))))

(define (apply op args)

 (if (primitive? op)

 (do-magic op args)

 (mceval (op-body op)

 (extend-environment

 (op-formals op)

 args

 (op-env op)))))

• In Scheme or Lisp, the representation of a
function has three parts:
• A list of the names of its formal parameters
• The expression(s) that make up the

function’s body, i.e. the code to be evaluated
• The environment in which the function was

defined, so values of non-local symbols can
be looked up

• We might just represent a function as a list like
(procedure (x y) (+ (* 2 x) y) (… env …))

• An environment is just a list of environment
frames
• The last frame in the list is the global one
• The nth frame in the list extends the n+1th

• An environment frame records two things
• A list of variables bound in the environment
• The values they are bound to

• Suppose we want to extend the global environ-
ment with a new local one where x=1 and y=2

• Consider entering:
 (define foo 100)
 (define (square x) (* x x))

• The environment after evaluating the first two
expressions would look like:

(((square foo …) (procedure (x)(* x x)) 100 …)

)
variable names variable values

• Consider entering:
 (square foo)
• Scheme evaluates square and foo in the

current environment and pushes a new
frame onto the environment in which x is
bound to 100

(((x) 100)
 ((square foo …) (procedure (x)(* x x)) 100 …)
)

(define (scheme)
 (display "Type `exit' to leave MCE\n")
 (schemeloop))

(define (schemeloop)
 (display "\nMCE> ")
 (let ((input (read)))
 (if (equal? input 'exit)
 'done
 (begin (display (mceval input the-global-environment))
 (schemeloop)))))

(define (mceval exp env)
 (cond ((self-evaluating? exp) exp)
 ((symbol? exp) (lookup-variable-value exp env))
 ((quoted? exp) (cadr exp))
 ((assignment? exp) (eval-assignment exp env))
 ((definition? exp) (eval-definition exp env))
 ((if? exp) (eval-if exp env))
 ((lambda? Exp)

 (make-procedure (cadr exp) (cddr exp) env))
 ((begin? exp) (eval-sequence (cdr exp) env))
 ((application? exp)
 (mcapply (mceval (car exp) env)
 (map (lambda (x)(mceval x env)) (cdr exp))))

 (else (error "mceval: Unknown expression type" exp))))

(define (mcapply procedure arguments)
 (cond ((primitive-procedure? procedure)
 (apply-primitive-procedure procedure arguments))
 ((defined-procedure? procedure)
 (eval-sequence
 (proc-body procedure)
 (extend-environment
 (proc-parameters procedure)
 arguments
 (proc-environment procedure))))
 (else (error "mceval: Unknown proc. type" procedure))))

(define the-empty-environment '())

(define (setup-environment)
 (let ((initial-env
 (extend-environment primitive-proc-names
 primitive-proc-objects
 the-empty-environment)))
 (define-variable! 'empty '() initial-env)
 initial-env))

(define the-global-environment (setup-environment))

(define (extend-environment vars vals base-env)
 (if (= (length vars) (length vals))
 (cons (make-frame vars vals) base-env)
 (if (< (length vars) (length vals))
 (error "Too many arguments supplied" vars vals)
 (error "Too few arguments supplied" vars vals))))

(define (make-frame variables values)
 (cons variables values))

(define (lookup-variable-value var env)
 (define (env-loop env)

 (define (scan vars vals)
 (cond ((null? vars)
 (env-loop (enclosing-environment env)))
 ((eq? var (car vars)) (car vals))
 (else (scan (cdr vars) (cdr vals)))))

 (if (eq? env the-empty-environment)
 (error "Unbound variable" var)
 (let ((frame (car-frame env)))
 (scan (frame-variables frame)
 (frame-values frame)))))
 (env-loop env))

(define (define-variable! var val env)
 (let ((frame (car-frame env)))
 (define (scan vars vals)
 (cond ((null? vars)
 (add-binding-to-frame! var val frame))
 ((eq? var (car vars))
 (set-car! vals val))
 (else (scan (cdr vars) (cdr vals)))))
 (scan (frame-variables frame)
 (frame-values frame))))

(define (set-variable-value! var val env)
 (define (env-loop env)
 (define (scan vars vals)
 (cond ((null? vars) (env-loop (enclosing-environment env)))
 ((eq? var (car vars)) (set-car! vals val))
 (else (scan (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable -- SET!" var)
 (let ((frame (car-frame env)))
 (scan (frame-variables frame) (frame-values frame)))))
 (env-loop env))

