
1

Some material adapted
from Upenn cmpe391
slides and other sources

•  Names & Assignment
•  Sequences types: Lists, Tuples, and

Strings
•  Mutability
•  Understanding Reference Semantics in

Python

 x = 34 - 23 # A comment.

 y = “Hello” # Another one.

 z = 3.45

 if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

 print x

 print y

•  Indentation matters to meaning the code
•  Block structure indicated by indentation

•  The first assignment to a variable creates it
•  Dynamic typing: No declarations, names don’t have

types, objects do
•  Assignment uses = and comparison uses ==
•  For numbers + - * / % are as expected.

•  Use of + for string concatenation.
•  Use of % for string formatting (like printf in C)

•  Logical operators are words (and,or,not)
not symbols

•  The basic printing command is print

2

•  Integers (default for numbers)
z = 5 / 2 # Answer 2, integer division

•  Floats
x = 3.456

•  Strings
•  Can use ”…" or ’…’ to specify, "foo" == 'foo’
•  Unmatched can occur within the string
“John’s” or ‘John said “foo!”.’

•  Use triple double-quotes for multi-line strings or
strings than contain both ‘ and “ inside of them:
“““a‘b“c”””

Whitespace is meaningful in Python, especially
indentation and placement of newlines
• Use a newline to end a line of code

Use \ when must go to next line prematurely
• No braces {} to mark blocks of code, use
consistent indentation instead

•  First line with less indentation is outside of the block
•  First line with more indentation starts a nested block

• Colons start of a new block in many constructs,
e.g. function definitions, then clauses

• Start comments with #, rest of line is ignored
• Can include a “documentation string” as the

first line of a new function or class you define
• Development environments, debugger, and

other tools use it: it’s good style to include one

def fact(n):

 “““fact(n) assumes n is a positive
integer and returns facorial of n.”””
assert(n>0)

 return 1 if n==1 else n*fact(n-1)

•  Binding a variable in Python means setting a
name to hold a reference to some object
•  Assignment creates references, not copies

•  Names in Python don’t have an intrinsic type,
objects have types
Python determines type of the reference auto-
matically based on what data is assigned to it

•  You create a name the first time it appears on the
left side of an assignment expression:
 x = 3

•  A reference is deleted via garbage collection after
any names bound to it have passed out of scope

•  Python uses reference semantics (more later)

3

•  Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

•  There are some reserved words:
 and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, if,
import, in, is, lambda, not, or,
pass, print, raise, return, try,
while

The Python community has these
recommended naming conventions
• joined_lower for functions, methods and,

attributes
• joined_lower or ALL_CAPS for constants
• StudlyCaps for classes
• camelCase only to conform to pre-existing

conventions
• Attributes: interface, _internal, __private

• You can assign to multiple names at the
same time
>>> x, y = 2, 3
>>> x
2
>>> y
3

This makes it easy to swap values
>>> x, y = y, x

• Assignments can be chained
>>> a = b = x = 2

Accessing a name before it’s been properly
created (by placing it on the left side of an
assignment), raises an error

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

4

1. Tuple
•  A simple immutable ordered sequence of

items
•  Items can be of mixed types, including

collection types
2. Strings

•  Immutable
•  Conceptually very much like a tuple

3. List
•  Mutable ordered sequence of items of

mixed types

•  All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

•  Key difference:
•  Tuples and strings are immutable
•  Lists are mutable

•  The operations shown in this section
can be applied to all sequence types
• most examples will just show the

operation performed on one

•  Define tuples using parentheses and commas
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

•  Define lists are using square brackets and
commas
>>> li = [“abc”, 34, 4.34, 23]

•  Define strings using quotes (“, ‘, or “““).
>>> st = “Hello World”

>>> st = ‘Hello World’

>>> st = “““This is a multi-line

string that uses triple quotes.”””

5

•  Access individual members of a tuple, list, or
string using square bracket “array” notation

•  Note that all are 0 based…
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
 ‘abc’

>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
 34

>>> st = “Hello World”
>>> st[1] # Second character in string.
 ‘e’

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0
 >>> t[1]
‘abc’

Negative index: count from right, starting with –1
>>> t[-3]

4.56

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

• Return a copy of the container with a subset of
the original members. Start copying at the first
index, and stop copying before the second
index.
>>> t[1:4]
(‘abc’, 4.56, (2,3))

•  You can also use negative indices
>>> t[1:-1]
(‘abc’, 4.56, (2,3))

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

• Omit first index to make a copy starting from
the beginning of the container

 >>> t[:2]
 (23, ‘abc’)

• Omit second index to make a copy starting at
the first index and going to the end of the
container

 >>> t[2:]
 (4.56, (2,3), ‘def’)

6

•  [:] makes a copy of an entire sequence
 >>> t[:]

 (23, ‘abc’, 4.56, (2,3), ‘def’)

•  Note the difference between these two lines
for mutable sequences

>>> l2 = l1 # Both refer to 1 ref,

 # changing one affects both
>>> l2 = l1[:] # Independent copies, two
refs

•  Boolean test whether a value is inside a container:
>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

•  For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

•  Be careful: the in keyword is also used in the syntax
of for loops and list comprehensions

•  The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 6)
 (1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”
 ‘Hello World’

•  The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

7

>>> li = [‘abc’, 23, 4.34, 23]

>>> li[1] = 45

>>> li
[‘abc’, 45, 4.34, 23]

•  We can change lists in place.
•  Name li still points to the same memory

reference when we’re done.

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
 File "<pyshell#75>", line 1, in -toplevel-
 tu[2] = 3.14
TypeError: object doesn't support item assignment

• You can’t change a tuple.
• You can make a fresh tuple and assign its
reference to a previously used name.
 >>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

• The immutability of tuples means they’re faster
than lists.

>>> li = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Note the method
syntax

>>> li
[1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)

>>>li

[1, 11, ‘i’, 3, 4, 5, ‘a’]

8

• + creates a fresh list with a new memory ref
• extend operates on list li in place.

>>> li.extend([9, 8, 7])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

• Potentially confusing:
•  extend takes a list as an argument.
•  append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10,

11, 12]]

•  Lists have many methods, including index,
count, remove, reverse, sort

>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘b’) # index of 1st occurrence

1

>>> li.count(‘b’) # number of occurrences
2

>>> li.remove(‘b’) # remove 1st occurrence

>>> li
 [‘a’, ‘c’, ‘b’]

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li
 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(some_function)
 # sort in place using user-defined comparison

• The comma is the tuple creation operator, not parens
>>> 1,
(1,)

• Python shows parens for clarity (best practice)
>>> (1,)
(1,)

• Don't forget the comma!
>>> (1)
1

• Trailing comma only required for singletons others
• Empty tuples have a special syntactic form

>>> ()
()
>>> tuple()
()

9

•  Lists slower but more powerful than tuples
•  Lists can be modified, and they have lots of

handy operations and mehtods
•  Tuples are immutable and have fewer

features
•  To convert between tuples and lists use the

list() and tuple() functions:
li = list(tu)

tu = tuple(li)

•  Assignment manipulates references
— x = y does not make a copy of the object y

references
— x = y makes x reference the object y references

•  Very useful; but beware!, e.g.
>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

•  Why?

•  There’s a lot going on with x = 3
•  An integer 3 is created and stored in memory
•  A name x is created
•  An reference to the memory location storing

the 3 is then assigned to the name x
•  So: When we say that the value of x is 3, we

mean that x now refers to the integer 3

Type: Integer
Data: 3

Name: x
Ref: <address1>

name list memory

10

Understanding Reference Semantics

•  The data 3 we created is of type integer –
objects are typed, variables are not

•  In Python, the datatypes integer, float, and
string (and tuple) are “immutable”

•  This doesn’t mean we can’t change the value
of x, i.e. change what x refers to …

•  For example, we could increment x:
>>> x = 3

>>> x = x + 1

>>> print x

4

Understanding Reference Semantics

Type: Integer
Data: 3 Name: x

Ref: <address1>

>>> x = x + 1

Type: Integer
Data: 3 Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

Type: Integer
Data: 3 Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

11

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address2>

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

12

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

So, for simple built-in datatypes (integers, floats,
strings) assignment behaves as expected
>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3
>>> y = 4 # Creates ref for 4. Changes y
>>> print x # No effect on x, still ref 3
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

For other data types (lists, dictionaries, user-defined
types), assignment work the same, but some
methods change the objects
•  These datatypes are “mutable”
•  Change occur in place
•  We don’t copy them to a new memory address each time
•  If we type y=x, then modify y, both x and y are changed

>>> x = 3 x = some mutable object
>>> y = x y = x
>>> y = 4 make a change to y
>>> print x look at x
3 x will be changed as well

immutable mutable

13

a
1 2 3

b

a
1 2 3

b
4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Surprising example surprising no more

So now, here’s our code:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

•  Python uses a simple reference
semantics much like Scheme or Java

