
1

• Python makes good use of iterators
• And has a special kind of generator

function that is powerful and useful
• We’ll look at what both are
• And why they are useful
• See Norman Matloff’s excellent tutorial on

python iterators and generators from
which some of this material is borrowed

>>> f = open("myfile.txt")
>>> for l in f.readlines(): print len(l)
9
21
35
43
>>> f = open("myfile.txt")
>>> for l in f: print len(l)
...
9
21
35
43

readlines() returns a
list of the lines in file

A file is a iterator, producing
new values as needed

• Iterators are supported wherever you
can iterate over collections in containers
(e.g., lists, tuples, dictionaries)

>>> f = open("myfile.txt")
>>> map(len, f.readlines())
[9, 21, 35, 43]
>>> f = open("myfile.txt")
>>> map(len, f)
[9, 21, 35, 43]
>>>

2

• Iterators are like sequences (lists,
tuples), but…
• The entire sequence is not manifested
• Items produced one at a time when and

as needed
• The sequence can be infinite (e.g., all

positive integers)
• You can create your own iterators if you

write a function to generate the next item

class fibnum:
 def __init__(self):
 self.fn2 = 1
 self.fn1 = 1

 def next(self): # next() is the heart of any iterator
 # use of the following tuple to not only save lines of
 # code but insures that only the old values of self.fn1 and
 # self.fn2 are used in assigning the new values
 (self.fn1, self.fn2, oldfn2) = (self.fn1+self.fn2, self.fn1, self.fn2)
 return oldfn2

 def __iter__(self):
 return self

next() used to generate
successive values

Classes with an __iter__()
method are iterators

http://cs.umbc.edu/courses/331/fall10/code/python/itgen/fib.py

>>> from fib import *
>>> f = fibnum()
>>> for i in f:
... print i
... if I > 100: break
1
1
2
3
…
144
>>>
http://cs.umbc.edu/courses/331/fall10/code/python/itgen/fib.py

class fibnum20:
 def __init__(self):
 self.fn2 = 1 # "f_{n-2}"
 self.fn1 = 1 # "f_{n-1}"

 def next(self):
 (self.fn1,self.fn2,oldfn2) = (self.fn1+self.fn2,self.fn1,self.fn2)
 if oldfn2 > 20: raise StopIteration
 return oldfn2

 def __iter__(self):
 return self Raise this error to tell

consumer to stop
http://cs.umbc.edu/courses/331/fall10/code/python/itgen/fib.py

3

>>> from fib import *
>>> for i in fibnum20(): print i
1
1
2
3
5
8
13
>>>
http://cs.umbc.edu/courses/331/fall10/code/python/itgen/fib.py

• The list function materializes an
iterator’s values as a list

>>> list(fibnum20())
[1, 1, 2, 3, 5, 8, 13

• sum(), max(), min() know about iterators
>>> sum(fibnum20())
33
>>> max(fibnum20())
13
>>> min(fibnum20())
1

• The itertools library module has some
useful tools for working with iterators
• islice() is like slice but works with

streams produced by iterators
>>> from itertools import *
>>> list(islice(fibnum(), 6))
[1, 1, 2, 3, 5, 8]
>>> list(islice(fibnum(), 6, 10))
[13, 21, 34, 55]

• See also imap, ifilter, …

• Python generators generate iterators
• They are more powerful and convenient
• Write a regular function and instead of

calling return to produce a value, call
yield instead
• When another value is needed, the

generator function picks up where it left
off
• Raise the StopIteration exception or call

return when you are done

4

def gy():
 x = 2
 y = 3
 yield x,y,x+y
 z = 12
 yield z/x
 yield z/y
 return

>>> from gen import *
>>> g = gy()
>>> g.next()
(2, 3, 5)
>>> g.next()
6
>>> g.next()
4
>>> g.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

StopIteration
>>>

http://cs.umbc.edu/courses/331/fall10/code/python/itgen/gen.py

def fib():
 fn2 = 1
 fn1 = 1
 while True:
 (fn1,fn2,oldfn2) = (fn1+fn2,fn1,fn2)
 yield oldfn2

http://cs.umbc.edu/courses/331/fall10/code/python/itgen/gen.py

def getword(fl):
 for line in fl:
 for word in line.split():
 yield word
 return

http://cs.umbc.edu/courses/331/fall10/code/python/itgen/gen.py

def inorder(tree):
 if tree:
 for x in inorder(tree.left):
 yield x
 yield tree.dat
 for x in inorder(tree.right):
 yield x

