
1

Chapter 3
RDF Schema

Introduction

RDF has a very simple data model
RDF Schema (RDFS) enriches the data model,
adding vocabulary and associated semantics for
– Classes and subclasses
– Properties and sub-properties
– Typing of properties

Support for describing simple ontologies
Adds an object-oriented flavor
But with a logic-oriented approach and using
“open world” semantics

RDF Schema (RDFS)

RDFS adds
taxonomies for
classes & properties
– subClass and

subProperty
and some metadata.
– domain and range

constraints on
properties

Several widely used
KB tools can import
and export in RDFS Stanford Protégé KB editor

• Java, open sourced
• extensible, lots of plug-ins
• provides reasoning & server capabilities

RDFS Vocabulary

Terms for classes
– rdfs:Class
– rdfs:subClassOf

Terms for properties
– rdfs:domain
– rdfs:range
– rdfs:subPropertyOf

Special classes
– rdfs:Resource
– rdfs:Literal
– rdfs:Datatype

Terms for collections
– rdfs:member
– rdfs:Container
– rdfs:ContainerMem-

bershipProperty
Special properties
– rdfs:comment
– rdfs:seeAlso
– rdfs:isDefinedBy
– rdfs:label

RDFS introduces the following terms, giving
each a meaning w.r.t. the rdf data model

2

RDF and RDF Schema

<rdf:RDF
xmlns:g=“http://schema.org/gen”
xmlns:u=“http://schema.org/univ”>

<u:Chair rdf:ID=“john”>
<g:name>John Smith</g:name>

</u:Chair>
</rdf:RDF>

<rdfs:Property rdf:ID=“name”>
<rdfs:domain rdf:resource=“Person”>

</rdfs:Property>

<rdfs:Class rdf:ID=“Chair”>
<rdfs:subclassOf rdf:resource=

“http://schema.org/gen#Person”>
</rdfs:Class>

u:Chair

John Smith

rdf:type
g:name

g:Person

g:name

rdfs:Class rdfs:Property

rdf:type
rdf:type

rdf:type

rdfs:subclassOf

rdfs:domain

RDFS supports simple inferences

An RDF ontology plus some RDF statements may imply
additional RDF statements.
This is not true of XML.
Note that this is part of the data model and not of the
accessing or processing code.

@prefix rdfs: <http://www.....>.
@prefix : <genesis.n3>.

parent rdfs:domain person;
rdfs:range person.

mother rdfs:subProperty parent;
rdfs:domain woman;
rdfs:range person.

eve mother cain.

parent a property.
person a class.
woman subClass person.
mother a property.
eve a person;

a woman;
parent cain.

cain a person.

New and
Improved!
100% Better
than XML!!

New and
Improved!
100% Better
than XML!!

N3 example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <#> .
<> rdfs:comment “This is an N3 example”.
:Person a rdfs:Class.
:Woman a rdfs:Class; rdfs:subClassOf :Person.
:eve a :Woman; :age “100”.
:sister a rdf:Property; rdfs:domain :Person;

rdfs:range :Woman.
:eve :sister [a :Woman; :age 98].
:eve :believe {:eve :age “100”}.
[is :spouse of [is :sister of :eve]] :age 99.
:eve.:sister.:spouse :age 99.

This defines the “empty prefix”
as refering to “this document”

Here’s how you declare a
namespace. <> Is an alias for the URI of this

document.

“person is a class”. The “a” syntax is
sugar for rdf:type property.“Woman is a class and a subclass of

person”. Note the ; syntax.

“eve is a woman whose
age is 100.”

“sister is a property from
person to woman”

“eve has a sister who is a 98 year old
woman”. The brackets introduce an
anonymous resource.

“eve believes that her age is
100”. The braces introduce
a reified triple. “the spouse of the sister of

eve is 99”.

“the spouse of the sister of
eve is 99”.

Ex: University Lecturers – Prefix
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#

>

3

Ex: University Lecturers -- Classes
<rdfs:Class rdf:ID="staffMember">

<rdfs:comment>The class of staff members </rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="academicStaffMember">
<rdfs:comment>The class of academic staff members </rdfs:comment>
<rdfs:subClassOf rdf:resource="#staffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="lecturer">
<rdfs:comment> The class of lecturers. All lecturers are academic staff
members.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="course">
<rdfs:comment>The class of courses</rdfs:comment>

</rdfs:Class>

Ex: University Lecturers -- Properties
<rdf:Property rdf:ID="isTaughtBy">

<rdfs:comment>Assigns lecturers to courses.
</rdfs:comment>
<rdfs:domain rdf:resource="#course"/>
<rdfs:range rdf:resource="#lecturer"/>

</rdf:Property>
<rdf:Property rdf:ID="teaches">

<rdfs:comment>Assigns courses to lecturers.
</rdfs:comment>
<rdfs:domain rdf:resource="#lecturer"/>
<rdfs:range rdf:resource="#course"/>

</rdf:Property>

Ex: University Lecturers -- Instances
<uni:lecturer rdf:ID="949318"

uni:name="David Billington"
uni:title="Associate Professor">
<uni:teaches rdf:resource="#CIT1111"/>
<uni:teaches rdf:resource="#CIT3112"/>

</uni:lecturer>
<uni:lecturer rdf:ID="949352"

uni:name="Grigoris Antoniou"
uni:title="Professor">
<uni:teaches rdf:resource="#CIT1112"/>
<uni:teaches rdf:resource="#CIT1113"/>

</uni:lecturer>
<uni:course rdf:ID="CIT1111"

uni:courseName="Discrete Mathematics">
<uni:isTaughtBy rdf:resource="#949318"/>

</uni:course>
<uni:course rdf:ID="CIT1112"

uni:courseName="Concrete Mathematics">
<uni:isTaughtBy rdf:resource="#949352"/>

</uni:course>

RDFS vs. OO Models

In OO models, an object class defines the
properties that apply to it
– Adding a new property means to modify the class

In RDF, properties are defined globally and aren’t
encapsulated as attributes in the class definition
– One can define new properties without changing the

class
– Properties can have properties

:mother rdfs:subPropertyOf :parent; rdf:type :FamilyRelation.

– You can’t narrow the domain and range of properties in
a subclass

4

Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

bio:Animal a rdfs:Class.
Bio:offspring a rdfs:Property;

rdfs:domain bio:Animal;
rdfs:range bio:Animal.

bio:Human rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
:fido a bio:Dog.
:john a bio:Human;

bio:offspring :fido.

There is no way to say that
the offspring of humans are
humans and the offspring of
dogs are dogs.

Example

Bio:child rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Human;
rdfs:range bio:Human.

Bio:puppy rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Dog;
rdfs:range bio:Dog.

:john bio:child :mary.
:fido bio:puppy :rover.

What do we know after
each of the last two
triples are asserted?

Suppose we also assert:
• :john bio:puppy :rover
• :john bio:child :fido

Not like types in OO systems

Classes differ from types in OO systems in how
they are used.
– They are not constraints on well-formedness

The lack of negation and the open world
assumption make it impossible to detect
contradictions
– Can’t say that Dog and Human are disjoint classes
– Not knowing that there are individuals who are

both doesn’t mean it’s not true

No disjunctions or union types

What does this mean?

bio:Cat rdfs:subClassOf bio:Animal.
bio:pet a rdfs:Property;

rdfs:domain bio:Human;
rdfs:range bio:Dog;
rdfs:range bio:Cat.

5

No disjunctions or union types

We have to define the Class explicitly.

bio:Cat rdfs:subClassOf bio:Animal;
rdfs:subClassOf bio:Pet.

bio:Dog rdfs:subClassOf bio:Pet.
bio:Pet rdfs:subClassOf bio:Animal.

bio:pet a rdfs:Property;
rdfs:domain bio:Pet;
rdfs:range bio:Pet;

There’s redundancy
here. It may or may not
be what we want to say
Only dogs and cats can
be pets?. Are all cats
pets? What about feral
cats?

Classes and individuals are not disjoint

In OO systems a thing is either a class or object
– Many KR systems are like this: you are either an

instance or a class, not both.
Not so in RDFS
bio:Species rdf:type rdfs:Class.
bio:Dog rdf:type rdfs:Species; rdfs:subClassOf bio:Animal.
:fido rdf:type bio:Dog.

Adds richness to the language but causes
problems, too
– In OWL lite and OWL DL you can’t do this.
– OWL has it’s own notion of a Class, owl:Class

Inheritance is simple

No defaults, overriding, shadowing
What you say about a class is necessarily try of
all sub-classes
A class’ properties are not inherited by its
members.
– Can’t say “Dog’s are normally friendly” or even “All

dogs are friendly”
– The meaning of the Dog class is a set of individuals

Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ

{.....}

a

b

Model

Mary drives Z123ABC

6

Is RDF(S) better than XML?

Q: For a specific application, should I use XML or RDF?
A: It depends…

XML's model is
– a tree, i.e., a strong hierarchy
– applications may rely on hierarchy position
– relatively simple syntax and structure
– not easy to combine trees

RDF's model is
– a loose collections of relations
– applications may do “database”-like search
– not easy to recover hierarchy
– easy to combine relations in one big collection
– great for the integration of heterogeneous information

Problems with RDFS
RDFS too weak to describe resources in sufficient detail,
e.g.:
–No localised range and domain constraints

Can’t say that the range of hasChild is person when applied to
persons and elephant when applied to elephants

–No existence/cardinality constraints
Can’t say that all instances of person have a mother that is also a
person, or that persons have exactly 2 parents

–No transitive, inverse or symmetrical properties
Can’t say that isPartOf is a transitive property, that hasPart is the
inverse of isPartOf or that touches is symmetrical

We need RDF terms providing these and other features.

Conclusions

RDF is a simple data model based on a graph
– Independent on any serialization (e.g., XML or N3)

RDF has a formal semantics providing a dependable basis
for reasoning about the meaning of RDF expressions
RDF has an extensible URI-based vocabulary
RDF has an XML serialization and can use values
represented as XML schema datatypes
Anyone can make statements about any resource (open
world assumption)
RDFS builds on RDF’s foundation by adding vocabulary
with well defined semantics (e.g., Class, subClassOf, etc.)
OWL addresses some of RDFS’s limitations adding
richness (and complexity).

