Bayesian Reasoning

Chapter 13

Today’s class

* Probability theory
 Bayesian inference
— From the joint distribution
— Using independence/factoring
— From sources of evidence

Sources of uncertainty

* Uncertain inputs
— Missing data
— Noisy data

* Uncertain knowledge
— Multiple causes lead to multiple effects
— Incomplete enumeration of conditions or effects
— Incomplete knowledge of causality in the domain
— Probabilistic/stochastic effects

* Uncertain outputs
— Abduction and induction are inherently uncertain
— Default reasoning, even in deductive fashion, is uncertain
— Incomplete deductive inference may be uncertain

» Probabilistic reasoning only gives probabilistic
results (summarizes uncertainty from various sources)

Decision making with uncertainty

Rational behavior:
— For each possible action, identify the possible outcomes
— Compute the probability of each outcome
— Compute the utility of each outcome
— Compute the probability-weighted (expected) utility
over possible outcomes for each action

— Select the action with the highest expected utility
(principle of Maximum Expected Utility)




Why probabilities anyway?

*  Kolmogorov showed that three simple axioms lead to the
rules of probability theory
— De Finetti, Cox, and Carnap have also provided compelling
arguments for these axioms
1. All probabilities are between 0 and 1:
« 0<P@)<l
2. Valid propositions (tautologies) have probability 1, and
unsatisfiable propositions have probability 0:
e P(true) = 1 ; P(false) =0
3. The probability of a disjunction is given by:
* P(avb)=P(a)+Pb)—Planrb)

Probability theory

* Random variables  Alarm, Burglary, Earthquake
— Domain — Boolean (like these), discrete,
continuous
* Atomic event: complete * Alarm=True A Burglary=True A
specification of state Earthquake=False

alarm A burglary A —earthquake

Prior probability: degree * P(Burglary) =.1
of belief without any other

evidence
+ Joint probability: matrix * P(Alarm, Burglary) =
of combined probabilities alarm —alarm
of a set of variables burglary 09 01
—burglary |.1 .8

Probability theory (cont.)

* Conditional probability: * P(burglary | alarm) = .47
probability of effect given causes P(alarm | burglary) = .9
« Computing conditional probs: * P(burglary | alarm) =

— P(a|b)=P(aa b)/P(b) P(burglary A alarm) / P(alarm)
— P(b): normalizing constant =.09/.19= .47

 Product rule: * P(burglary A alarm) =
— P(a A b)=P(a|b) P(b) P(burglary | alarm) P(alarm) =

Mareinalizine: A7*.19=.09
* Marginalizing:
— P(B)=5,P(B, a) * P(alarm) =
— P(B)=.P(B | a) P(a) P(alarm A burglary) +
(conditioning) lz)(;iiarlrriAI;burglary) =

Example: Inference from the joint

alarm —alarm

earthquake | —earthquake | earthquake —earthquake

burglary  |.01 08 001 009

—burglary | .01 .09 .01 79

P(Burglary | alarm) = o P(Burglary, alarm)
= o [P(Burglary, alarm, earthquake) + P(Burglary, alarm, —earthquake)
=a[(.01,.01)+(.08,.09)]
=a[(09,.1)]
Since P(burglary | alarm) + P(—burglary | alarm) = 1, a = 1/(.09+.1) = 5.26
(i.e., P(alarm) = 1/a = .19 — quizlet: how can you verify this?)
P(burglary | alarm) = .09 * 5.26 = .474

P(—burglary | alarm) = .1 * 5.26 = .526




Exercise: Inference from the joint

smart —smart
p(smart A

study A prep) |study |-study |study |-study

prepared 432 ].16 .084 .008

—prepared .048 |.16 .036 .072

* Queries:
— What is the prior probability of smart?
— What is the prior probability of study?
— What is the conditional probability of prepared, given
study and smart?

» Save these answers for next time! ©

Independence

* When two sets of propositions do not affect each others’
probabilities, we call them independent, and can easily
compute their joint and conditional probability:

— Independent (A, B) — P(A A B)=P(A) P(B), P(A|B)=P(A)

* For example, {moon-phase, light-level} might be
independent of {burglary, alarm, earthquake}

— Then again, it might not: Burglars might be more likely to
burglarize houses when there’s a new moon (and hence little light)

— But if we know the light level, the moon phase doesn’t affect
whether we are burglarized

— Once we’re burglarized, light level doesn’t affect whether the alarm
goes off

* We need a more complex notion of independence, and
methods for reasoning about these kinds of relationships
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Exercise: Independence

smart —smart
p(smart A

study A prep) |study |-study |study |-study

prepared 432 1.16 .084 .008

—prepared 048 |.16 .036 .072

¢ Queries:
— Is smart independent of study?
— Is prepared independent of study?

Conditional independence

» Absolute independence:
— A and B are independent if P(A A B) = P(A) P(B); equivalently,
P(A)=P(A | B) and P(B) =P(B | A)
* A and B are conditionally independent given C if
~P(AAB|C)=P(A|C)P(B|C)
* This lets us decompose the joint distribution:
- P(AABAC)=PA|C)PB|C)PC)
* Moon-Phase and Burglary are conditionally independent
given Light-Level
* Conditional independence is weaker than absolute
independence, but still useful in decomposing the full joint
probability distribution




Exercise: Conditional independence

smart —smart
p(smart A

study A prep) |study |-study |study |-study

prepared 432 ].16 .084 .008

—prepared .048 |.16 .036 .072

* Queries:
— Is smart conditionally independent of prepared, given
study?

— Is study conditionally independent of prepared, given
smart?

Bayes’s rule

* Bayes’s rule is derived from the product rule:
— P(Y | X)=P(X | Y) P(Y)/ P(X)
* Often useful for diagnosis:
— If X are (observed) effects and Y are (hidden) causes,
— We may have a model for how causes lead to effects (P(X | Y))

— We may also have prior beliefs (based on experience) about the
frequency of occurrence of effects (P(Y))

— Which allows us to reason abductively from effects to causes (P(Y |

X)).

Bayesian inference

* In the setting of diagnostic/evidential reasoning

H, PH) hypotheses
PW/ \ \
E, E; E,  evidence/manifestations
— Know prior probability of hypothesis P(H,)
conditional probability P(E;|H,)

— Want to compute the posterior probability ~ P(H,|E))
* Bayes’s theorem (formula 1):

P(H,|E;)=P(H)P(E;|H,)/ P(E;)

Simple Bayesian diagnostic reasoning

» Knowledge base:
— Evidence / manifestations:  E,, ... E|

— Hypotheses / disorders: H,...H
* E; and H; are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases)

— Conditional probabilities: P(Ej [H),i=1,...n;j=1,...m

n

* Cases (evidence for a particular instance): E, ..., E,
* Goal: Find the hypothesis H; with the highest posterior
— Max; P(H; |E,, ..., E)




Bayesian diagnostic reasoning I

* Bayes’ rule says that
- PH; |E,, ...,E)=PE,, ...,E |H)PH)/PE, ... E)
* Assume each piece of evidence E; is conditionally
independent of the others, given a hypothesis H;, then:
- PE, ... E|H)= Hlj:1 P(Ej | Hy)
« If we only care about relative probabilities for the H;, then
we have:
- P(H;| E,, ..., E) = a P(H) Hljzl P(Ej [ Hy)

Limitations of simple
Bayesian inference

 Cannot easily handle multi-fault situations, nor cases where
intermediate (hidden) causes exist:
— Disease D causes syndrome S, which causes correlated
manifestations M, and M,
* Consider a composite hypothesis H, A H,, where H, and H,
are independent. What is the relative posterior?
—PH, AH,|E,,...,E)=aP(E, ..., E | H o Hy) P(H, A Hy)
=aP(E, ..., E/|H, » Hy) P(H,) P(H,)
=a Hlj:1 P(E; | H; A Hy) P(H,) P(H,)
* How do we compute P(E; | H; A H,) ??

Limitations of simple Bayesian
inference II

Assume H1 and H2 are independent, given E1, ..., E1?
- P(H, AH,|E,,..,E)=PH, |E,,...,E)PH,|E, ....E)
This is a very unreasonable assumption

— Earthquake and Burglar are independent, but not given Alarm:
« P(burglar | alarm, earthquake) << P(burglar | alarm)

Another limitation is that simple application of Bayes’s rule doesn’t
allow us to handle causal chaining:
— A: this year’s weather; B: cotton production; C: next year’s cotton price
— A influences C indirectly: A— B — C
- P(C|B,A)=P(C|B)
Need a richer representation to model interacting hypotheses,
conditional independence, and causal chaining

Next time: conditional independence and Bayesian networks!




