Bayesian Reasoning

Chapter 13

· Probability theory

Today's class

- · Bayesian inference
 - From the joint distribution
 - Using independence/factoring
 - From sources of evidence

Sources of uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
- ▶ Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision making with uncertainty

Rational behavior:

- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select the action with the highest expected utility (principle of Maximum Expected Utility)

Why probabilities anyway?

- Kolmogorov showed that three simple axioms lead to the rules of probability theory
 - De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- 1. All probabilities are between 0 and 1:
 - $0 \le P(a) \le 1$
- 2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:
 - P(true) = 1; P(false) = 0
- 3. The probability of a disjunction is given by:
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Probability theory

- · Random variables
 - Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- · Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- Alarm=True Λ Burglary=True Λ
 Earthquake=False
 alarm Λ burglary Λ ¬earthquake
- P(Burglary) = .1
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory (cont.)

- Conditional probability: probability of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$ P(b): possessing constant
- P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \sum_{a} P(B, a)$ $P(B) = \sum_{a} P(B \mid a) P(a)$
 - (conditioning)

- P(burglary | alarm) = .47 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary \(\) alarm) / P(alarm) = .09 / .19 = .47
- P(burglary \(\) alarm) = P(burglary | alarm) P(alarm) = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary) =
 .09+.1 = .19

Example: Inference from the joint

	alarm		¬alarm	
	earthquake	-earthquake	earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

 $P(Burglary | alarm) = \alpha P(Burglary, alarm)$

- = α [P(Burglary, alarm, earthquake) + P(Burglary, alarm, ¬earthquake)
- $= \alpha [(.01, .01) + (.08, .09)]$
- $= \alpha [(.09, .1)]$

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 -$ quizlet: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

 $P(\neg burglary \mid alarm) = .1 * 5.26 = .526$

8

Exercise: Inference from the joint

p(smart A	smart		¬smart	
study A prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

- Queries:
 - What is the prior probability of smart?
 - What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?
- Save these answers for next time! ©

Exercise: Independence

p(smart A	smart		¬smart	
study A prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

- Oueries:
 - Is *smart* independent of *study*?
 - Is prepared independent of study?

Independence

- When two sets of propositions do not affect each others' probabilities, we call them independent, and can easily compute their joint and conditional probability:
 - Independent (A, B) \rightarrow P(A \(A \) B) = P(A) P(B), P(A \| B) = P(A)
- For example, {moon-phase, light-level} might be independent of {burglary, alarm, earthquake}
 - Then again, it might not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
 - But if we know the light level, the moon phase doesn't affect whether we are burglarized
 - Once we're burglarized, light level doesn't affect whether the alarm goes off
- We need a more complex notion of independence, and methods for reasoning about these kinds of relationships

10

Conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) P(B)$; equivalently, $P(A) = P(A \mid B)$ and $P(B) = P(B \mid A)$
- A and B are conditionally independent given C if
 - $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$
- This lets us decompose the joint distribution:
 - $P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$
- Moon-Phase and Burglary are conditionally independent given Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Exercise: Conditional independence

p(smart A	smart		¬smart	
study A prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

- Oueries:
 - Is smart conditionally independent of prepared, given study?
 - Is study conditionally independent of prepared, given smart?

13

Bayes's rule

- Bayes's rule is derived from the product rule:
 - P(Y | X) = P(X | Y) P(Y) / P(X)
- · Often useful for diagnosis:
 - If X are (observed) effects and Y are (hidden) causes,
- We may have a model for how causes lead to effects (P(X | Y))
- We may also have prior beliefs (based on experience) about the frequency of occurrence of effects (P(Y))
- Which allows us to reason abductively from effects to causes ($P(Y \mid X)$).

14

Bayesian inference

• In the setting of diagnostic/evidential reasoning

 $\begin{array}{ccc} & & & & & & & & & \\ P(E_j \mid H) & & & & & & & & \\ E_1 & & E_j & & E_m & & & & \\ \end{array} \quad \text{ evidence/manifestations }$

- Know prior probability of hypothesis $P(H_i)$ conditional probability $P(E_j | H_i)$

– Want to compute the posterior probability $P(H_i | E_j)$

• Bayes's theorem (formula 1):

$$P(H_i \mid E_j) = P(H_i)P(E_j \mid H_i)/P(E_j)$$

15

Simple Bayesian diagnostic reasoning

· Knowledge base:

– Evidence / manifestations: $E_1, \dots E_m$

- Hypotheses / disorders: H₁, ... H_n

 E_j and H_i are binary; hypotheses are mutually exclusive (nonoverlapping) and exhaustive (cover all possible cases)

– Conditional probabilities: $P(E_j | H_i)$, i = 1, ... n; j = 1, ... m

• Cases (evidence for a particular instance): E₁, ..., E₁

• Goal: Find the hypothesis H_i with the highest posterior

 $- Max_i P(H_i | E_1, ..., E_l)$

Bayesian diagnostic reasoning II

· Bayes' rule says that

$$- P(H_i | E_1, ..., E_l) = P(E_1, ..., E_l | H_i) P(H_i) / P(E_1, ..., E_l)$$

• Assume each piece of evidence E_i is conditionally independent of the others, *given* a hypothesis H_i , then:

$$- P(E_1, ..., E_l | H_i) = \prod_{j=1}^l P(E_j | H_i)$$

- If we only care about relative probabilities for the H_i, then we have:
- $P(H_i | E_1, ..., E_l) = \alpha P(H_i) \prod_{i=1}^{l} P(E_i | H_i)$

17

Limitations of simple Bayesian inference II

- Assume H1 and H2 are independent, given E1, ..., E1?
 - $P(H_1 \land H_2 | E_1, ..., E_l) = P(H_1 | E_1, ..., E_l) P(H_2 | E_1, ..., E_l)$
- This is a very unreasonable assumption
 - Earthquake and Burglar are independent, but not given Alarm:
 - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Another limitation is that simple application of Bayes's rule doesn't allow us to handle causal chaining:
 - A: this year's weather; B: cotton production; C: next year's cotton price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - P(C | B, A) = P(C | B)
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- · Next time: conditional independence and Bayesian networks!

19

Limitations of simple Bayesian inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider a composite hypothesis H₁ \(\Lambda \) H₂, where H₁ and H₂ are independent. What is the relative posterior?

$$\begin{split} - & P(H_1 \land H_2 \mid E_1, ..., E_l) = \alpha \ P(E_1, ..., E_l \mid H_1 \land H_2) \ P(H_1 \land H_2) \\ & = \alpha \ P(E_1, ..., E_l \mid H_1 \land H_2) \ P(H_1) \ P(H_2) \\ & = \alpha \ \prod_{i=1}^{l} P(E_i \mid H_1 \land H_2) \ P(H_1) \ P(H_2) \end{split}$$

• How do we compute $P(E_i | H_1 \land H_2)$??