
1

Chapter 11.4-11.7

Some material adapted from slides by
Jean-Claude Latombe / Lise Getoor

GraphPlan

GraphPlan: Basic idea

•  Construct a graph that encodes
constraints on possible plans

•  Use this “planning graph” to constrain
search for a valid plan

•  Planning graph can be built for each
problem in a relatively short time

Planning graph
•  Directed, leveled graph with alternating layers of

nodes
•  Odd layers (“state levels”) represent candidate

propositions that could possibly hold at step i
•  Even layers (“action levels”) represent candidate

actions that could possibly be executed at step i,
including maintenance actions [do nothing]

•  Arcs represent preconditions, adds and deletes
•  We can only execute one real action at any step,

but the data structure keeps track of all actions
and states that are possible

2

GraphPlan properties
•  STRIPS operators: conjunctive preconditions, no

conditional or universal effects, no negations

–  Planning problem must be convertible to propositional

representation

–  NO continuous variables, temporal constraints, …

–  Problem size grows exponentially

•  Finds “shortest” plans (by some definition)

•  Sound, complete, and will terminate with failure if
there is no plan

What actions and what literals?

•  Add an action in level Ai if all of its preconditions
are present in level Si

•  Add a literal in level Si if it is the effect of some
action in level Ai-1 (including no-ops)

•  Level S0 has all of the literals from the initial
state

Simple domain
•  Literals:

–  at X Y X is at location Y
–  fuel R rocket R has fuel
–  in X R X is in rocket R

•  Actions:
–  load X L load X (onto R) at location L

 (X and R must be at L)
–  unload X L unload X (from R) at location L

 (R must be at L)
–  move X Y move rocket R from X to Y

 (R must be at L and have fuel)
•  Graph representation:

–  Solid black lines: preconditions/effects
–  Dotted red lines: negated preconditions/effects

Example planning graph

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

move L P

move P L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

3

Valid plans
•  A valid plan is a planning graph where:

–  Actions at the same level donʼt interfere (delete each
otherʼs preconditions or add effects)

–  Each actionʼs preconditions are true at that point in
the plan

–  Goals are satisfied at the end of the plan

Exclusion relations (mutexes)

•  Two actions (or literals) are mutually exclusive
(“mutex”) at step i if no valid plan could contain
both.

•  Can quickly find and mark some mutexes:

–  Interference: Two actions that interfere (the effect of

one negates the precondition of another) are mutex

–  Competing needs: Two actions are mutex if any of

their preconditions are mutex with each other

–  Inconsistent support: Two literals are mutex if all

ways of creating them both are mutex

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Inconsistent effects

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Inconsistent support

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

4

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Interference:
Inconsistent
preconditions and
effects

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

move P L

move L P

Example: Mutex constraints
at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Competing needs

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

Extending the planning graph
•  Action level Ai:

–  Include all instantiations of all actions (including maintains (no-
ops)) that have all of their preconditions satisfied at level Si,
with no two being mutex

–  Mark as mutex all action-maintain pairs that are incompatible
–  Mark as mutex all action-action pairs that have competing

needs
•  State level Si+1:

–  Generate all propositions that are the effect of some action at
level Ai

–  Mark as mutex all pairs of propositions that can only be
generated by mutex action pairs

Basic GraphPlan algorithm

•  Grow the planning graph (PG) until all goals are
reachable and none are pairwise mutex. (If PG
levels off [reaches a steady state] first, fail)

•  Search the PG for a valid plan

•  If none found, add a level to the PG and try
again

5

Creating the planning graph is
usually fast

•  Theorem 1:

The size of the t-level planning graph and the
time to create it are polynomial in:

–  t (number of levels),

–  n (number of objects),

–  m (number of operators), and

–  p (number of propositions in the initial state)

Searching for a plan
•  Backward chain on the planning graph

•  Complete all goals at one level before going back

•  At level i, pick a non-mutex subset of actions that
achieve the goals at level i+1. The preconditions of these
actions become the goals at level i.

•  Build the action subset by iterating over goals, choosing
an action that has the goal as an effect. Use an action
that was already selected if possible. Do forward
checking on remaining goals.

SATPlan

SATPlan

•  Formulate the planning problem as a CSP
•  Assume that the plan has k actions
•  Create a binary variable for each possible action

a:
–  Action(a,i) (TRUE if action a is used at step i)

•  Create variables for each proposition that can
hold at different points in time:
–  Proposition(p,i) (TRUE if proposition p holds at step i)

6

Constraints

•  Only one action can be executed at each time
step (XOR constraints)

•  Constraints describing effects of actions
•  Persistence: if an action does not change a

proposition p, then p’s value remains unchanged
•  A proposition is true at step i only if some action

(possibly a maintain action) made it true
•  Constraints for initial state and goal state

Still more variations…

•  Blackbox:
STRIPS-based plan representation

Planning graph

CNF representation

CSP/SAT solver

CSP solution

Plan

•  Military operations
•  Autonomous space operations
•  Construction tasks
•  Machining tasks
•  Mechanical assembly
•  Design of experiments in genetics
•  Command sequences for satellite

Most applied systems use extended
representation languages, nonlinear

planning techniques, and domain-specific
heuristics

