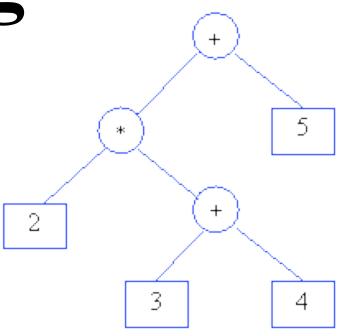
4(c) parsing



$$2*(3+4)+5$$

Parsing

- A grammar describes the strings that are syntactically legal
- A recogniser simply accepts or rejects strings
- A *generator* produces sentences in the language described by the grammar
- A *parser* constructs a derivation or parse tree for a sentence, if possible
- Two common types of parsers:
 - bottom-up or data driven
 - top-down or hypothesis driven
- A recursive descent parser is a way to implement a topdown parser that is particularly simple

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- Top-down parsers: starts constructing the parse tree at the top (root) and move A = 1 + 3 * 4 / 5down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.:
 - Predictive parsers (e.g., LL(k))
- Bottom-up parsers: build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.:
 - -shift-reduce parser (or LR(k) parsers)
- Both are general techniques that can be made to work for all languages (but not all grammars!).

Top down vs. bottom up parsing

- Both are general techniques that can be made to work for all languages (but not all grammars!)
- Recall that a given language can be described by several grammars
- Both of these grammars describe the same language

- The first one, with its left recursion, causes problems for top down parsers
- For a given parsing technique, we may have to transform the grammar to work with it

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary CFG is O(n³), e.g., it can take time proportional the cube of the number of input symbols. This is bad! (why?)
- If we constrain the grammar somewhat, we can always parse

in linear time. This is good!

- Linear-time parsing
 - -LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - -LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy

- LL(n): Left to right, Leftmost derivation, look ahead at most n symbols.
- LR(n): Left to right, Rightmost derivation in Reverse, look ahead at most n symbols.

Top Down Parsing Methods

- Simplest method is a full-backup, *recursive descent* parser
- Often used for parsing simple languages
- Write recursive recognizers (subroutines) for each grammar rule
 - -If rules succeeds perform some action (i.e., build a tree node, emit code, etc.)
 - -If rule fails, return failure. Caller may try another choice or fail
 - –On failure it "backs up"

Top Down Parsing Methods: Problems

- When going forward, the parser consumes tokens from the input, so what happens if we have to back up?
 - suggestions?
- Algorithms that use backup tend to be, in general, inefficient
 - There might be a large number of possibilities to try before finding the right one or giving up
- Grammar rules which are left-recursive lead to non-termination!

Recursive Decent Parsing: Example For the grammar:

```
<term> -> <factor> { (*|/) < factor>} *
```

We could use the following recursive descent parsing subprogram (this one is written in C)

Problems

- Some grammars cause problems for top down parsers
- Top down parsers do not work with leftrecursive grammars
 - E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

Left-recursive grammars

• A grammar is left recursive if it has rules like

$$X \rightarrow X \beta$$

• Or if it has indirect left recursion, as in

$$X \rightarrow A \beta$$

- Q: Why is this a problem?
 - −A: it can lead to non-terminating recursion!

Left-recursive grammars

Consider

• We can manually or automatically rewrite a grammar removing left-recursion, making it ok for a top-down parser.

Elimination of Left Recursion

• Consider left-recursive grammar

$$S \rightarrow S \alpha$$

 $S \rightarrow \beta$

• S generates strings

```
β
β α
β α α ...
```

• Rewrite using right-recursion

```
S \rightarrow \beta S'
S' \rightarrow \alpha S' \mid \epsilon
```

• Concretely

```
T \rightarrow T + id
T \rightarrow id
```

- T generates strings id id+id id+id ...
- Rewrite using rightrecursion

```
T -> id
T -> id T
```

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid \dots \mid S \alpha_n \mid \beta_1 \mid \dots \mid \beta_m$$

- All strings derived from S start with one of β_1 , ..., β_m and continue with several instances of α_1 , ..., α_n
- Rewrite as

$$S \rightarrow \beta_1 S' | \dots | \beta_m S'$$

 $S' \rightarrow \alpha_1 S' | \dots | \alpha_n S' | \epsilon$

General Left Recursion

• The grammar

$$S \to A \alpha \mid \delta$$

$$A \to S \beta$$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

where → + means "can be rewritten in one or more steps"

• This indirect left-recursion can also be automatically eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar, allowing us to successfully *predict* which rule to use
 - The gcc compiler now uses recursive descent

Predictive Parser

- A **predictive parser** uses information from the *first terminal symbol* of each expression to decide which production to use
- A predictive parser, aka an LL(k) parser, does a Left-to-right parse, a Leftmost-derivation, and k-symbol lookahead
- Grammars where one can decide which rule to use by examining only the first token are LL(1)
- LL(1) grammars are widely used in practice
 - The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

```
S \rightarrow \text{if } E \text{ then } S \text{ else } S

S \rightarrow \text{begin } S L
```

 $S \rightarrow \mathbf{print} E$

 $L \rightarrow end$

 $L \rightarrow SL$

 $E \rightarrow \text{num} = \text{num}$

An S expression starts either with an IF, BEGIN, or PRINT token, and an L expression start with an END or a SEMICOLON token, and an E expression has only one production.

Remember...

- Given a grammar and a string in the language defined by the grammar ...
- There may be more than one way to *derive* the string leading to the *same parse tree*
 - it just depends on the order in which you apply the rules
 - and what parts of the string you choose to rewrite next
- All of the derivations are *valid*
- To simplify the problem and the algorithms, we often focus on one of
 - A *leftmost* derivation
 - A rightmost derivation

LL(k) and LR(k) parsers

- Two important parser classes are LL(k) and LR(k)
- The name LL(k) means:
 - L Left-to-right scanning of the input
 - L Constructing leftmost derivation
 - k max number of input symbols needed to select parser action
- The name LR(k) means:
 - L *Left-to-right* scanning of the input
 - R Constructing rightmost derivation in reverse
 - k max number of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to "look ahead" more than one input token to know what parser production rule applies

Predictive Parsing and Left Factoring

• Consider the grammar

```
E \rightarrow T + E
E \rightarrow T
T \rightarrow int
T \rightarrow int * T
T \rightarrow (E)
```

- Hard to predict because
 - For T, two productions start with int
 - For E, it is not clear how to predict which rule to use
- A grammar must be **left-factored** before use for predictive parsing
- Left-factoring involves rewriting the rules so that, if a nonterminal has more than one rule, <u>each</u> begins with a **terminal**

Left-Factoring Example

Add new non-terminals X and Y to factor out **common prefixes** of rules

$$E \rightarrow T + E$$

$$E \rightarrow T$$

$$T \rightarrow int$$

$$T \rightarrow int * T$$

$$T \rightarrow (E)$$

$$E \rightarrow T X$$
 $X \rightarrow + E$
 $X \rightarrow \epsilon$
 $T \rightarrow (E)$
 $T \rightarrow int Y$
 $Y \rightarrow * T$
 $Y \rightarrow \epsilon$

Left Factoring

- Consider a rule of the form
 - A => a B1 | a B2 | a B3 | ... a Bn
- A top down parser generated from this grammar is not efficient as it requires backtracking.
- To avoid this problem we left factor the grammar.
 - Collect all productions with the same left hand side and begin with the same symbols on the right hand side
 - Combine common strings into a single production and append a new non-terminal to end of this new production
 - Create new productions using this new non-terminal for each of the suffixes to the common production.
- After left factoring the above grammar is transformed into:

Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at [S, a]
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Table Example

Left-factored grammar

```
E \rightarrow T X

X \rightarrow + E \mid \epsilon

T \rightarrow (E) \mid int Y

Y \rightarrow * T \mid \epsilon
```

End of input symbol

The LL(1) parsing table

	int	*	+	()	\$
E	ΤX			ΤX		
X			+ E		3	3
T	int Y			(E)		
Y		* T	3		3	3

LL(1) Parsing Table Example

 $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is *int*, use production E
 → T X
 - Only production that can generate an *int* in next place
- Consider the [Y, +] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only in a derivation where $Y \rightarrow \varepsilon$
- Consider the [E, *] entry
 - Blank entries indicate error situations
 - "There is no way to derive a string starting with * from non-terminal E"

	int	*	+	()	\$
E	ТХ			ΤX		
X			+ E		3	3
T	int Y			(E)		
Y		* T	3		8	3

LL(1) Parsing Algorithm

```
initialize stack = <S $> and next
repeat
  case stack of
     \langle X, \text{ rest} \rangle : if T[X,*\text{next}] = Y_1...Y_n
                          then stack \leftarrow <Y<sub>1</sub>... Y<sub>n</sub> rest>;
                          else error ();
     \langle t, rest \rangle : if t == *next ++
                          then stack \leftarrow <rest>;
                          else error ();
until stack == < >
             (1) next points to the next input token
   where: (2) X matches some non-terminal
             (3) t matches some terminal
```

LL(1) Parsing Example

Stack	Input	Action
E \$	int * int \$	pop();push(T X)
T X \$	int * int \$	pop();push(int Y)
int Y X \$	int * int \$	pop();next++
Y X \$	* int \$	pop(); push(* T)
* T X \$	* int \$	pop();next++
T X \$	int \$	pop();push(int Y)
int Y X \$	int \$	pop(); next++;
Y X \$	\$	pop()
X \$	\$	pop()
\$	\$	ACCEPT!

Ε	\rightarrow	TX	
Χ	\rightarrow	+E	
Χ	\rightarrow	ε	
Т	\rightarrow	(E)	
Т	\rightarrow	int	Y
Y	\rightarrow	*T	
Y	\rightarrow	ε	

	int	*	+	()	\$
E	ΤX			ΤX		
X			+ E		3	3
T	int Y			(E)		
Y		* T	3		3	3

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG
- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where t can start a string derived from α
 - $-\alpha \rightarrow^* t\beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - $-S \rightarrow^* \beta A t \delta$
 - We say t ∈ Follow(A)

Computing First Sets

Definition: First(X) = $\{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$

Algorithm sketch (see book for details):

- 1. for all terminals t do $First(t) \leftarrow \{t\}$
- 2. for each production $X \to \varepsilon$ do First $(X) \leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - add ε to First(X)
- 5. repeat steps 4 & 5 until no First set can be grown

First Sets. Example

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) | int Y$

$$X \to + E \mid \varepsilon$$
$$Y \to * T \mid \varepsilon$$

• First sets

```
First( ( ) = { ( }
First()) = {)}
First(+) = \{+\}
First( * ) = { * }
```

First(() = { (} First(T) = {int, (} First()) = { () } First(E) = {int, (} First(int) = { (int) } First(X) = { +,
$$\epsilon$$
 } First(+) = { + } First(Y) = {*, ϵ }

Computing Follow Sets

• Definition:

Follow(X) = {
$$t \mid S \rightarrow^* \beta X t \delta$$
 }

- Intuition
 - If S is the start symbol then \$ ∈ Follow(S)
 - If X → A B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - Also if B →* ε then Follow(X) \subseteq Follow(A)

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) \leftarrow {\$}
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow(+) = { int, ( } Follow(*) = { int, ( } Follow(()) = { int, ( } Follow((
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal t ∈ First(α) do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - − If ε ∈ First(α) and S ∈ Follow(A) do
 - $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: **shift** and **reduce**
 - In abstract terms, we do a simulation of a Push Down
 Automata as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol

Algorithm

- 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
- 2. Repeat until the input buffer is empty and the stack contains the start symbol.
 - a. <u>Shift</u> zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.
 - b. Reduce handle to the nonterminal A. (There is a production $A \rightarrow beta$)
- 3. <u>Accept</u> input string and return some representation of the derivation sequence found (e.g., <u>parse tree</u>)
- The four key operations in bottom-up parsing are <u>shift, reduce, accept</u> and <u>error.</u>
- Bottom-up parsing is also referred to as shift-reduce parsing.
- Important thing to note is to know when to shift and when to reduce and to which reduce.

Example of Bottom-up Parsing

ACTION

STACK	INPUT BUFFER	ACTION
\$	num1+num2*num3\$	shift
\$num1	+num2*num3\$	reduc
\$F	+num2*num3\$	reduc
\$T	+num2*num3\$	reduc
\$E	+num2*num3\$	shift
\$E+	num2*num3\$	shift
\$E+num2	*num3\$	reduc
\$E+F	*num3\$	reduc
\$E+T	*num3\$	shift
E+T*	num3\$	shift
E+T*num3	\$	reduc
E+T*F	\$	reduc
E+T	\$	reduc
E	\$	accept

THOUTH DUREND

CTACK

E -> E+T

| T

| E-T

T -> T*F

| F

| T/F

F -> (E)

| id

| -E

num