Lexical analysis

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Concepts

 Lexical scanning

* Regular expressions
 DFAs and FSAs

e [ex

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Character stream

Token stream

Parse tree

Abstract syntax tree or
other intermediate form

Modified intermediate form

Assembly or machine language,

or other target language

Modified target language

This is an overview of the standard

/\/\/\/\/\/

process of turning a text file into an

executable program.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Scanner (lexical analysis)

Parser (syntax analysis)

AN,

YR

" Semantic analysis and
_Intermediate code generation

\—/

4 Machine-independent

\—/

Q:ode improvement {optional)

e
\.

Target code generation

4 Machine-specific)

_code improvement (optional)

(Symbol table)

Lexical analysis in perspective

LEXICAL ANALYZER: Transforms character stream to token stream

— Also called scanner, lexer, linear analysis, or tokenizer

lexical token
source I
analyzer | parser
program y get next
token
symbol table
LEXICAL ANALYZER PARSER

Scans Input — Performs Syntax Analysis

Removes whitespace, newlines, ...
Identifies Tokens
Creates Symbol Table

— Actions Dictated by Token Order
— Updates Symbol Table Entries

— Creates Abstract Rep. of Source

Inserts Tokens into symbol table
— Generates Error messages

Generates Errors

Sends Tokens to Parser

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Where we are

Total=price+tax; >

Tot (S pri |[Hta|;
al ce X
assignment
I
id - Expr
I I I
id + id
price tax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Basic lexical analysis terms

« Token

— A classification for a common set of strings

— Examples: <identifier>, <number>, etc.

e Pattern

— The rules which characterize the set of strings for a token
— Recall file and OS wildcards (*.java)

e [Lexeme

— Actual sequence of characters that matches a pattern and 1s
classified by a token

— Identifiers: X, count, name, etc...

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Examples of token, lexeme and pattern

If (price + gst — rebate <= 10.00) gift := false

Token lexeme Informal description of pattern

if if if

Lparen ((

Identifier | price String consists of letters and numbers and starts with a letter
operator | + +

identifier | gst String consists of letters and numbers and starts with a letter
operator | - -

identifier | rebate String consists of letters and numbers and starts with a letter
Operator | <= Less than or equal to

constant | 10.00 Any numeric constant

rparen))

identifier | gift String consists of letters and numbers and starts with a letter
Operator | := Assignment symbol

identifier | false String consists of letters and numbers and starts with a letter

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

CMSC 331, Som

Regular Expressions (REs)

Scanners are based on regular expressions that
define simple patterns

REs are simpler and less expressive than BNF

Examples of regular expressions:
letter: alb|c|...|z|AB|C...|Z

digit: 0[1]2/3|4/5/6]7/8|9

identifier: letter (letter | digit)*

Basic operations are (1) set union, (2)
concatenation and (3) Kleene closure

Plus: parentheses, naming patterns
No recursion! (Why not? We’ll see...)

e material © 1998 by Addison Wesley Longman, Inc.

Regular expression (RES)

Example

letter: ajblc|...|z|AB|C...|Z
digit: 0|1|2|3|4/5|6|7|8|9
identifier: letter (letter | digit)*

concatenation: one pattern

‘letter‘ ‘(lettel‘ ‘ dlglt) *‘ followed by another

letter ([letter | digit|) * e oepetemer

. . Kleene closure: zero or more
letter (letter | digit) repetions of a pattern

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

OH NO! THE KILLER || BUT TD AIND THEM WED HAVE TO SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR

WHENEVER T LEARN A |
NEW SKILL T CoNCoCT | | HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY | /
SCENARI0S WHERE (T ; ~— IT5 HOPELESS|
LETS ME. SAVE THE DAY. %
i T KNOW REGUAR
(EVERBOY STD B"’UB/ (EXPRESSIONS J/

N

ufil i}

Regular expressions are extremely useful in many applications. Mastering them will serve you well.

Formal language operations

Land M

in M}

Example
Operation | Notation Definition
P L={a, b} M={0,1}
: LUM LUM={s|sisinLors
union of Land M is in M} {a, b, 0, 1}
concatenation of LM LM ={st|sisinLandtis

{a0, a1, b0, b1}

1 ”

All the strings consists of “a

positive closure

concatenations of “ L

Kleene closure L* L* denotes zero or more | and “b”, plus the empty
of L concatenations of L string. {g, a, b, aa, bb, ab, ba,
aaa, ...}
L+ L+ denotes “one or more All the strings consists of “a

and “b”. {a, b, aa, bb, ab, ba,
aaa, ...}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression

* Let 2 be an alphabet and » be a regular expression.
Then L(7) 1s the language that 1s characterized by the
rules of r

 Definition of regular expression

— ¢ 1s a regular expression that denotes the language {&}

—If aisin X, a 1s a regular expression that denotes {a}

— Let r & s be regular expressions with languages L(r) & L(s)
» (1) | (s) is a regular expression =2 L(r) U L(s)
» (1)(s) 1s a regular expression > L(r) L(s)
» (r)* is a regular expression 2> (L(1))*

* A regular language is a language that can be defined by
a regular expression

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression example revisited

« Examples of regular expression
Letter: alblc|l...|z|A|B|C...|Z
Digit: 0]1112]1314|5]6]718]9
ITdentifier: letter (letter | digit)*
* Q: why 1t is an regular expression?
— Because 1t only uses the operations of union,
concatenation and Kleene closure
* Being able to name patterns 1s just syntactic sugar

« Using parentheses to group things 1s just syntactic
sugar provided we specify the precedence and
associativity of the operators (i.e., |, * and “concat”)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another common operator: +

* The + operator i1s commonly used to mean
(11 _— 7
one or more repetitions of a pattern

* For example, letter™ means one or more letters
* We can always do without this, e.g.
letter™ is equivalent to letter letter”

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Precedence of operators

 * and + have the highest precedence;
e Concatenation comes next;

* | 1s lowest.

 All the operators are left associative.

* Example
—(a) | ((b)*(c)) 1s equivalent to alb*c
— What strings does this RE generate or match?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Epsilon

« Sometimes we need a token that represents
nothing

* This makes a regular expression matching
more complex, but can be useful

* We use the lower case Greek letter epsilon, &,
for this special token

« Example:
digit: 0[1|2|3|4/5|6|7|8|9|0
sign: +-|e

int: sign digit

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Properties of regular expressions

We can easily determine some basic
properties of the operators involved 1n
building regular expressions

Property Description
rls = sjr | is commutative
r|(s|t) = (r|s)|t | is associative
(rs)t=r(st) Concatenation is associative
::tl)t::;sr : Lt_ Concatenation distributes over |

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Notational shorthand of regular expression
* One or more instance — the + operator

— L+ = L L*
- L* = L+ |¢
— Examples

» digits: digit digit*

» digits: digith More syntatic sugar
e Zero or one instance — the ? operator
— L? = Lle
— Examples

» Optional fraction—>.digits|e

» optional fraction—>(.digits)?
» Character classes — the [] operators
— [abc] = alb|c
— [a-z] = alblc...|z

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular grammar and regular expression

« They are equivalent
—Every regular expression can be expressed by regular grammar
—Every regular grammar can be expressed by regular expression
 Example

— An identifier must begin with a letter and can be followed by
arbitrary number of letters and digits.

Regular expression Regular grammar

ID: LETTER (LETTER | DIGIT)* | ID > LETTER ID_REST
ID_REST > LETTER ID_REST
| DIGIT ID_REST
| EMPTY

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Formal definition of tokens

« A set of tokens 1s a set of strings over an alphabet
{read, write, +, -, *,/, =, 1,2,..., 10, ..., 3.45¢e-3, ...}

* A set of tokens 1s a regular set that can be defined by
using a regular expression

* For every regular set, there 1s a deterministic finite
automaton (DFA) that can recognize it

— Aka deterministic Finite State Machine (FSM)

—I.e. determine whether a string belongs to the set or
not

— Scanners extract tokens from source code in the
same way DFAs determine membership

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Token Definition Example

*Numeric literals 1in Pascal, e.g.
1,123, 3.1415, 10e-3, 3.14¢4
 Definition of token unsignedNum
DIG — 0|1/|2|3]4|5|6|7|8(9
unsignedint — DIG DIG*

unsignedNum —
unsignedint
((. unsignedint) | €)
((e (+|—|€) unsignedint) | €)

*Notes:

—Recursion restricted to leftmost or
rightmost position on LHS

—Parentheses used to avoid
ambiguity

—1It’s always possible to rewrite
removing epsilons ()

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

* FAs with epsilons are
nondeterministic.

* NFAs are much harder to
implement (use backtracking)

* Every NFA can be rewritten as
a DFA (gets larger, though)

Simple Problem

* Write a program which reads in a character string, consisting of
a’s and b’s, one character at a time. If the string contains a
double aa, then print string accepted else print string rejected.

* An abstract solution to this can be expressed as a DFA

CG:\/O @O

Start state An accepting state

Input
b

state and input

The state transitions of a d

DFA can be encoded as a y

table which specifies the current

new state for a given current state. | 3
3

1
1
3 3

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

#include <stdio.h>

main()
{ enum State {S1, S2, S3}; onc approaCh
enum State currentState = S1; in C

int ¢ = getchar();
while (c != EOF) {
switch(currentState) {
case S1: if (c == "a’) currentState = S2;
if (c == 'b’) currentState = S1;
break;
case S2: if (c == ‘a’) currentState = S3;
if (c =='b’) currentState = S1;
break;
case S3: break;

}

c = getchar();

}
if (currentState == S3) printf(“string accepted\n”);

else printf(“string rejected\n’);

}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

using a table

e simplifies the
{ enum State {S1, S2, S3}; program

enum Label {A, B};
enum State currentState = S1;
enum State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};
int label;
int ¢ = getchar();
while (c 1= EOF) {
if (c =="a’) label = A;
if (c =='b’) label = B;
currentState = table[currentState][label];
c = getchar();
}
if (currentState == S3) printf(“string accepted\n”);
else printf(“string rejected\n”);

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex

 Lexical analyzer generator
— It writes a lexical analyzer
« Assumption
— each token matches a regular expression
* Needs
— set of regular expressions
— for each expression an action
* Produces
— A C program

« Automatically handles many tricky problems
» flex 1s the gnu version of the venerable unix tool lex.
— Produces highly optimized code

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Scanner Generators

UNIX Programming Tools

* E.g. lex, flex

* These programs take
a table as their mnput
and return a program
(i.e. a scanner) that
can extract tokens
from a stream of

CharaCterS };I;:‘ '1“.:. P
* A very usetul 1
programming utility, CX & yaCC

especially when
coupled with a parser
generator (€.g., yacc)

i Standard in UniX ()’RE"_LY“c Tony Mason & Doug Brown

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex example

-

foo.l

> flex -ofoolex.c foo.l
> cc -ofoolex foolex.c

>more input
begin
if s1ze>10
then size * -3.1415

end

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

B

foolex.c

-111

CC ’

B

foolex

> foolex < mput
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

j input

tokens

Examples

* The examples to follow can be accessed on gl
* See /afs/umbc.edu/users/t/1/finin/pub/lex

$ 1ls -1 /afs/umbc.edu/users/f/i/finin/pub/lex

total 8

drwxr-xr-x 2 finin faculty 2048 Sep 27 13:31 aa

drwxr-xr-x 2 finin faculty 2048 Sep 27 13:32 defs
drwxr-xr-x 2 finin faculty 2048 Sep 27 11:35 footranscanner
drwxr-xr-x 2 finin faculty 2048 Sep 27 11:34 simplescanner

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A Lex Program

... definitions ...
% %

... rules ...

% %

... subroutines ...

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DIG [0-9]

ID [a-z][a-z0-9]*

% %

{DIG}+ printf("Integer\n”);
{DIG}+"."{DIG} * printf("Float\n™);
{ID} printf("Identifier\n”);
[\t\n]+ /* skip whitespace */
: printf("Huh?\n");

% %

main() {yylex();}

Simplest Example

%%

\n ECHO; * No definitions

%% * One rule

main() Minimal wrapper

{ | * Echoes mnput
yylex();

Strings containing aa

%%

(alb)*aa(alb)* {printf("Accept %s\n", yytext);}
[a|b]+ {printf("Reject %s\n", yytext);}
\n ECHO;

%%

main() {yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Rules

* Each has a rule has a pattern and an action
* Patterns are regular expression
* Only one action 1s performed

— The action corresponding to the pattern matched
is performed

—If several patterns match the input, the one
corresponding to the longest sequence 1s chosen

— Among the rules whose patterns match the same
number of characters, the rule given first 1s
preferred

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Definitions

* The definitions block allows you to name a RE

o If the name appears in curly braces 1n a rule, the RE
will be substituted

DIG [0-9]
{DIG}+ printf("int: %s\n", yytext);

{DIG}+"."{DIG}* printf("float: %s\n", yytext);
/* skip anything else */

oo
°0°

main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

/* scanner for a toy Pascal-like language */

Vo1

#include <math.h> /* needed for call to atof() */

Yo}

DIG [0-9]

ID [a-z][a-z0-9]*

% %o

{DIG}+ printf("Integer: %s (%d)\n", yytext, atoi(yytext));
{DIG}+"."{DIG} * printf("Float: %s (%g)\n", yytext, atof(yytext));
iffthenbeginlend printf("Keyword: %s\n",yytext);

{ID} printf("Identifier: %s\n",yytext);

e A Bl A printf("Operator: %s\n",yytext);
"M \n]E" " /* skip one-line comments */

[\t\n]+ /* skip whitespace */

: printf("Unrecognized: %s\n",yytext);
% %

main(){yylex(); ;

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

X character 'x' FleX’ S RE syntax

any character except newline
[xyz] character class, 1n this case, matches either an 'x', a'y', or a 'z

[abj-0Z)] character class with a range in it; matches 'a', 'b', any letter
from 'j' through 'o', or 'Z'

[*A-Z] negated character class, 1.e., any character but those in the
class, e.g. any character except an uppercase letter.

[*A-Z\n] any character EXCEPT an uppercase letter or a newline

zero or more r's, where r 1s any regular expression
r+ one or more r's
r? zero or one r's (1.e., an optional r)

{fname} expansion of the "name" definition

"[xy]\"foo" the literal string: '[xy]"foo' (note escaped ")

\x ifxisan'a','pd,'f', n', 'r','t", or 'v', then the ANSI-C
interpretation of \x. Otherwise, a literal 'x' (e.g., escape)

rs RE r followed by RE s (e.g., concatenation)

r(s either anr or an s

<<EOF>>end-of-file

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

