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Some Preliminaries 
• For the next several weeks we’ll look at how one 

can define a programming language 
• What is a language, anyway? 

“Language is a system of gestures, grammar, signs, 
sounds, symbols, or words, which is used to represent 
and communicate concepts, ideas, meanings, and 
thoughts” 

• Human language is a way to communicate 
representations from one (human) mind to another 

• What about a programming language? 
A way to communicate representations (e.g., of data or a 
procedure) between human minds and/or machines 
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We usually break down the problem of defining a 
programming language into two parts 

• defining the PL’s syntax 
• defining the PL’s semantics 

Syntax - the form or structure of the expressions, 
statements, and program units 

Semantics - the meaning of the expressions, 
statements, and program units 

Note: There is not always a clear boundary 
between the two 

Introduction 
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Why and How 
Why?  We want specifications for several 

communities: 
• Other language designers 
•  Implementers 
• Machines? 
• Programmers (the users of the language) 

How?  One ways is via natural language descriptions 
(e.g., user’s manuals, text books) but there are a 
number of techniques for specifying the syntax and 
semantics that are more formal. 
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This is an overview of the standard 
process of turning a text file into an 
executable program. 
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Syntax Overview 

•  Language preliminaries 
•  Context-free grammars and BNF 
•  Syntax diagrams 
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A sentence is a string of characters over some 
alphabet (e.g., def add1(n): return n + 1) 

A language is a set of sentences 

A lexeme is the lowest level syntactic unit of a  
language (e.g., *, add1, begin) 

A token is a category of lexemes (e.g., identifier) 

Formal approaches to describing syntax: 
• Recognizers - used in compilers 

• Generators - what we'll study 

Introduction 
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Lexical Structure of 
Programming Languages 

•  The structure of its lexemes (words or tokens) 
– token is a category of lexeme 

•  The scanning phase (lexical analyser) collects 
characters into tokens 

•  Parsing phase (syntactic analyser) determines 
syntactic structure 

Stream of  
characters


Result of  
parsing


tokens and 
values


lexical 

analyser


Syntactic 

analyser




CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Grammars 
Context-Free Grammars 

• Developed by Noam Chomsky in the mid-1950s.  
(View Chomsky vs. Bill Buckley on YouTube) 

• Language generators, meant to describe the syntax of 
natural languages. 

• Define a class of languages called context-free 
languages. 

Backus Normal/Naur Form (1959) 
•  Invented by John Backus to describe Algol 58 and 

refined by Peter Naur for Algol 60. 
• BNF is equivalent to context-free grammars  
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Six participants in the 1960 Algol conference in Paris. This 
was taken at the 1974 ACM conference on the history of 
programming languages. Top: John McCarthy, Fritz Bauer, 
Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.   

NOAM CHOMSKY, 
MIT Institute Professor; 
Professor of Linguistics, 
Linguistic Theory, 
Syntax, Semantics, 
Philosophy of Language 

• Chomsky & Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language 

• Backus focused on a practical way of specifying an 
artificial language, like Algol 

• Chomsky made fundamental contributions to mathe-
matical linguistics and was motivated by the study of 
human languages. 
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A metalanguage is a language used to describe 
another language. 

In BNF, abstractions are used to represent 
classes of syntactic structures -- they act like 
syntactic variables (also called nonterminal 
symbols), e.g. 

<while_stmt> ::= while <logic_expr> do <stmt> 

This is a rule; it describes the structure of a while 
statement.  Often the word production is used for rule. 

BNF (continued) 
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BNF  
• A rule has a left-hand side (LHS) which is a single 

non-terminal symbol and a right-hand side (RHS), 
one or more terminal or non-terminal symbols 

• A grammar is a finite, nonempty set of rules 
• A non-terminal symbol is “defined” by its rules. 
• Multiple rules can be combined with the vertical-bar  

( | ) symbol (read as “or”) 
• These two rules: 
<stmts> ::= <stmt> 
<stmts> ::= <stmt> ; <stmts> 

are equivalent to this one: 
<stmts> ::= <stmt> | <stmt> ; <stmts> 
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Non-terminals, pre-terminals & terminals 

•  A non-terminal symbol is any symbol that is on the LHS of 
a rule.  These represent abstractions in the language (e.g., 
if-then-else-statement in 
<if-then-else-statement> ::= if <test> 
then <statement> else <statement> 

•  A terminal symbol is any symbol that is not on the LHS of 
any rule.  AKA lexemes.  These are the literal symbols that 
will appear in a program (e.g., if, then, else in rules above). 

•  A pre-terminal symbol is a non-terminal that appears on the 
LHS of >= 1 rule(s), but in every case, the RHSs consist of 
single terminal symbols, e.g., <digit> in 
<digit> ::= 0 | 1 | 2 | 3 … 7 | 8 | 9 
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• Repetition is done with recursion 

• An <ident_list> is a sequence of one or more 
<ident>s separated by commas. 

<ident_list> ::= <ident> | 

                 <ident> , <ident_list> 

BNF 
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BNF Example  
Here is an example of a simple grammar for a small 
subset of English   
A sentence is a noun phrase and verb phrase followed by 
a period. 
<sentence> ::= <nounPhrase> <verbPhrase> .!
<nounPhrase> ::= <article> <noun>!
<article> ::= a | the!
<noun> ::= man | apple | worm | penguin!
<verbPhrase> ::= <verb>|<verb><nounPhrase>!
<verb> ::= eats | throws | sees | is!
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Derivations 
•  A derivation is a repeated application of rules, starting 

with the start symbol and ending with a sentence  
consisting only of terminal symbols 

•  It demonstrates, or proves that the derived sentence is 
“generated” by the grammar and is thus in the language 
that the grammar defines 

•  As an example, consider our baby English grammar 
<sentence>    ::= <nounPhrase><verbPhrase>.!
<nounPhrase> ::= <article><noun>!
<article>     ::= a | the!
<noun>        ::= man | apple | worm | penguin!
<verbPhrase> ::= <verb> | <verb><nounPhrase>!
<verb>        ::= eats | throws | sees | is 
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Derivation using BNF 

Here is a derivation for “the man eats the apple.” 
<sentence> -> <nounPhrase><verbPhrase>. 
                          <article><noun><verbPhrase>. 
                          the<noun><verbPhrase>. 
                          the man <verbPhrase>. 
                          the man <verb><nounPhrase>. 
                          the man eats <nounPhrase>. 
                          the man eats <article> < noun>. 
                          the man eats the <noun>. 
                          the man eats the apple.      
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Every string of symbols in the derivation is 
a sentential form 

A sentence is a sentential form that has only  
terminal symbols 

A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form 
is the one that is expanded in the next step 

A derivation may be either leftmost or 
rightmost or something else 

Derivation  
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Another BNF  Example 
<program> -> <stmts> 
<stmts> -> <stmt>  
        | <stmt> ; <stmts> 
<stmt> -> <var> = <expr> 
<var> -> a | b | c | d 
<expr> -> <term> + <term> | <term> - <term> 
<term> -> <var> | const 

Here is a  derivation: 
<program> => <stmts>  
          => <stmt>  
          => <var> = <expr>  
          => a = <expr>  
          => a = <term> + <term> 
          => a = <var> + <term>  
          => a = b + <term> 
          => a = b + const!

Note: There is some 
variation in notation 
for BNF grammars.  
Here we are using -> 
in the rules instead 
of ::= . 
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Finite and Infinite languages 
•  A simple language may have a finite number 

of sentences 
•  An example of a finite language is the set of 

strings representing integers between -10**6 
and +10**6 

•  A finite language can be defined by 
enumerating the sentences, but using a 
grammar might be much easier 

•  Most interesting languages have an infinite 
number of sentences (why?) 
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Is English a finite or infinite language? 

• Assume we have a finite set of words 
•  Consider adding rules like the following to the 

previous example 
<sentence> ::= <sentence><conj><sentence>.!
<conj>     ::= and | or | because 

• Hint: Whenever you see recursion in a BNF 
it’s likely that the language is infinite. 
– When might it not be?   
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Parse Tree 

               <program>!

                <stmts>!

                 <stmt>!

            <var>  =     <expr>!

             a      <term>  +   <term>!

                    <var>       const!

                      b   !

A parse tree is a hierarchical representation of 
a derivation 
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Another Parse Tree 

<sentence>


<nounPhrase> 
 <verbPhrase>


<article>
 <noun>
 <verb>
 <nounPhrase> 


<article>
 <noun>

the
 man
 eats


the
 apple
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A grammar is ambiguous if and only 
if (iff) it generates a sentential form 
that has two or more distinct parse 
trees. 

Ambiguous grammars are, in general, 
very undesirable in formal languages. 

We can sometimes eliminate 
ambiguity by changing the grammar. 

Grammar  
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• I saw the man on the hill with a 
telescope 

• Time flies like an arrow 

• Fruit flies like a banana 

• Buffalo Buffalo buffalo 

• verb, city, or beast? 

Ambiguous English Sentences  

See: Syntactic Ambiguity 
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An ambiguous grammar 
Here is an ambiguous grammar for 
expressions 

<e> -> <e> <op> <e>!
<e> -> 1|2|3!
<op> -> +|-|*|/!

The sentence 1+2*3 can lead to two 
different parse trees corresponding to 
1+(2*3) and (1+2)*3 

Fyi… In a programming language, an expression 
is some code that is evaluated and produces a 
value.  A statement is code that is executed and 
does something. 
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Two parse trees for 1+2*3 
<e> -> <e> <op> <e> 
<e> -> 1|2|3 
<op> -> +|-|*|/ 
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Operators 
• The traditional operator notation introduces 

many problems. 
• Operators are used in 

– Prefix notation: Expression (* (+ 1 3) 2) in Lisp 
–  Infix notation: Expression (1 + 3) * 2 in Java  
– Postfix notation: Increment foo++ in C 

• Operators can have one or more operands 
–  Increment in C is a one-operand operator: foo++ 
– Subtraction in C is a two-operand operator: foo - bar 
– Conditional expression in C is a three-operand 

operators:  (foo == 3 ? 0 : 1) 
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Operator notation 
•  So, how do we interpret expressions like 

(a) 2 + 3 + 4 
(b) 2 + 3 * 4 

•  While you might argue that it doesn’t matter for (a), it 
can for different operators (2 ** 3 ** 4) or when the 
limits of representation are hit (e.g., round off in 
numbers, e.g., 1+1+1+1+1+1+1+1+1+1+1+10**6) 

•  Concepts: 
– Explaining rules in terms of operator precedence 

and associativity 
– Realizing the rules in grammars 
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Operators: Precedence and Associativity 
• Precedence and associativity deal with the 

evaluation order within expressions 
• Precedence rules specify order in which operators 

of different precedence level are evaluated, e.g.: 
“*” Has a higher precedence that “+”, so “*” groups more 
tightly than “+” 

• What is the value of  the expression 4 * 5 ** 6 ? 
• A language’s precedence hierarchy should match 

our intuitions, but the result’s not always perfect, as 
in this Pascal example: 

if A<B and C<D then A := 0 ; 
• Pascal relational operators have lowest precedence! 

if A < B and C < D then A := 0 ; 



CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Operator Precedence: Precedence Table 
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Operator Precedence: Precedence Table 
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Operators: Associativity 
• Associativity rules specify order in which operators 

of the same precedence level are evaluated 
• Operators are typically either left associative or 

right associative. 
• Left associativity is typical for +, - , * and / 
• Right associativity is typical for _________? 
• So  A + B + C  

– Means: (A + B) + C 
– And not: A + (B + C) 

• Does it matter? 
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Operators: Associativity 
•  For + and * it doesn’t matter in theory (though it can in 

practice) but for – and / it matters in theory, too. 
•  What should A-B-C mean? 

(A – B) – C ≠ A – (B – C) 
•  What is the results of  2 ** 3 ** 4 ? 

– 2 ** (3 ** 4) = 2 ** 81 = 2417851639229258349412352 
–  (2 ** 3) ** 4 = 8 ** 4 = 256 

•  Languages diverge on this case: 
–  In Fortran, ** associates from right-to-left, as is normally 

the case for mathematics 
–  In Ada, ** doesn’t associate; you must write the previous 

expression as 2 ** (3 ** 4) to obtain the expected answer 
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Associativity in C 
•  In C, as in most languages, most of the operators 

associate left to right 
a + b + c => (a + b) + c 

• The various assignment operators, however, associate 
right to left 
=  +=  -=  *=  /=  %=  >>=  <<=  &=  ^=  |=  

• Consider a += b += c, which is interpreted as  
a += (b += c) 

•  and not as  
(a  += b) += c 

• Why? 
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If we use the grammar to indicate precedence 
levels of the operators, we avoid certain forms 
of ambiguity 

An unambiguous expression grammar: 
<expr> -> <expr> - <term>  |  <term> 

<term> -> <term> / const  |  const 

Precedence and Associativity in Grammar 
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Sentence: const – const / const 

Precedence and Associativity in Grammar 

Derivation: 
<expr> => <expr> - <term>  
            => <term> - <term> 
            => const - <term>  
            => const - <term> / const 
            => const - const / const                         <expr> 

               <expr>     -          <term> 

               <term>         <term>   /      const 

               const          const 

Parse tree: 
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Grammar (continued) 

Operator associativity can also be 
indicated by a grammar 

<expr> -> <expr> + <expr>  |  const  (ambiguous)!

<expr> -> <expr> + const  |  const  (unambiguous) 

                  <expr>!

       <expr>        +     const!

   <expr> +  const!

   const!

Does this grammar rule 
make the + operator right 
or left associative? 
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An Expression Grammar 
Here’s a  grammar to define simple arithmetic 
expressions over variables and numbers.  

      Exp ::= num 
     Exp ::= id 
     Exp ::= UnOp Exp 
     Exp := Exp BinOp Exp 
     Exp ::= '(' Exp ')' 

     UnOp ::= '+' 
     UnOp ::= '-' 
     BinOp ::= '+' | '-' | '*' | '/ 

Here’s another 
common notation 
variant where 
single quotes are 
used to indicate 
terminal symbols 
and unquoted 
symbols are taken 
as non-terminals. 
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A derivation 
Here’s a derivation of a+b*2 using the expression grammar:  

     Exp => ! ! !  // Exp ::= Exp BinOp Exp!
Exp BinOp Exp =>   // Exp ::= id!
id BinOp Exp =>    // BinOp ::= '+'!
id + Exp =>        // Exp ::= Exp BinOp Exp!
id + Exp BinOp Exp => // Exp ::= num!
id + Exp BinOp num => // Exp ::= id!
id + id BinOp num =>  // BinOp ::= '*'!
id + id * num!
a  + b  * 2!
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A parse tree 

A parse tree for a+b*2:  

                            __Exp__!
            /   |   \!
         Exp  BinOp   Exp!
          |     |   /  |    \!
         id     + Exp BinOp Exp!
         |         |     |   |!
         a         id    *  num!
                   |         |!
                   b         2!
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Precedence 
•  As we have said, precedence refers to the order in which 

operations are evaluated.   
•  Usual convention: exponents > mult div > add sub.  
•  So, deal with operations in categories: exponents, mulops, 

addops.  
•  Here’s a revised grammar that follows these conventions: 

Exp ::= Exp AddOp Exp!
Exp ::= Term!
Term ::= Term MulOp Term!
Term ::= Factor!
Factor ::= '(' + Exp + ')‘!
Factor ::= num | id!
AddOp ::= '+' | '-’!
MulOp ::= '*' | '/'!
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Associativity 

• Associativity refers to the order in which two 
of the same operation should be computed  
• 3+4+5 = (3+4)+5, left associative (all 

BinOps)  
• 3^4^5 = 3^(4^5), right associative  

• Conditionals right associate but have a 
wrinkle: an else clause associates with closest 
unmatched if  

if a then if b then c else d 
= if a then (if b then c else d) 
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Adding associativity to the grammar 

Adding associativity to the BinOp expression 
grammar 

     Exp    ::= Exp AddOp Term!
     Exp    ::= Term           !
     Term   ::= Term MulOp Factor!
     Term   ::= Factor           !
     Factor ::= '(' Exp ')'!
     Factor ::= num | id!
     AddOp  ::= '+' | '-'!
     MulOp  ::= '*' | '/'!
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Exp    ::= Exp AddOp Term!
Exp    ::= Term!
Term   ::= Term MulOp Factor!

Term   ::= Factor       !
Factor ::= '(' Exp ')’!
Factor ::= num | id!
AddOp  ::= '+' | '-‘!

MulOp  ::= '*' | '/'!

Grammar 
Exp =>!
Exp AddOp Term =>!
Exp AddOp Exp AddOp Term =>!
Term AddOp Exp AddOp Term =>!
Factor AddOp Exp AddOp Term =>!
Num AddOp Exp AddOp Term =>!
Num + Exp AddOp Term =>!
Num + Factor AddOp Term =>!
Num + Num AddOp Term =>!
Num + Num - Term =>!
Num + Num - Factor =>!
Num + Num - Num!

Derivation 

E 

A E 

A E 

T 

F 

num 

T 

F 

num 
T 

F 

num 

- 

+ 

Parse tree 
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Example: conditionals 
• Most languages allow two forms for if: 

–  if x < 0 then x = -x 
–  if x < 0 then x = -x else x = x+1 

• There is a standard rule for determining which 
if expression an else clause attaches to 
–  If x < 0 then if y < 0 x = -1 else x = -2 

• The rule: 
–  An else clause attaches to the nearest if to 

the left that does not yet have an else clause 
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Example: conditionals 
• Goal: to create a correct grammar for conditionals.  
•  It needs to be non-ambiguous and the precedence is else 

with nearest unmatched if 
Statement    ::= Conditional | 'whatever'!
Conditional ::= 'if' test 'then' Statement 'else‘ Statement!
Conditional ::= 'if' test 'then' Statement!

• The grammar is ambiguous. The first Conditional 
allows unmatched ifs to be Conditionals  

– Good: if test then (if test then whatever else whatever) 
– Bad: if test then (if test then whatever) else whatever 

• Goal: write a grammar that forces an else clause to 
attach to the nearest if w/o an else clause 
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Example: conditionals 
The final unambiguous grammar 

Statement ::= Matched | Unmatched 

Matched ::= 'if' test 'then' Matched 'else' Matched  
             | 'whatever' 

Unmatched ::= 'if' test 'then' Statement 

             | 'if' test 'then' Matched ‘else’ Unmatched 
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Syntactic sugar: doesn’t extend the expressive power 
of the formalism, but does make it easier to use, i.e., 
more readable and more writable 
• Optional parts are placed in brackets ([]) 
     <proc_call> -> ident [ ( <expr_list>)] 
• Put alternative parts of RHSs in parentheses and 
separate them with vertical bars   
    <term> -> <term> (+ | -) const 
• Put repetitions (0 or more) in braces ({}) 
     <ident> -> letter {letter | digit} 

Extended BNF 
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BNF: 
<expr> -> <expr> + <term> 

         | <expr> - <term> 

         | <term> 

<term> -> <term> * <factor> 

         | <term> / <factor> 

         | <factor> 

EBNF:!
<expr> -> <term> {(+ | -) <term>} 

<term> -> <factor> {(* | /) <factor>} 

BNF vs EBNF 
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Syntax Graphs 
Syntax Graphs - Put the terminals in circles or ellipses 
and put the nonterminals in rectangles; connect with 
lines with arrowheads 

    e.g., Pascal type declarations 

Provides an intuitive, graphical notation.!

..!

type_identifier!

(! identifier! )!

,!

constant! constant!
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Parsing  
•  A grammar describes the strings of tokens that are 

syntactically legal in a PL 
•  A recogniser simply accepts or rejects strings.  
•  A generator produces sentences in the language 

described by the grammar 
•  A parser construct a derivation or parse tree for a 

sentence (if possible) 
•  Two common types of parsers are: 

– bottom-up or data driven 
–  top-down or hypothesis driven 

•  A recursive descent parser is a way to implement a 
top-down parser that is particularly simple. 
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• How hard is the parsing task? 
• Parsing an arbitrary context free grammar is O(n3), 

e.g., it can take time proportional the cube of the 
number of symbols in the input. This is bad! 

•  If we constrain the grammar somewhat, we can 
always parse in linear time.  This is good! 

• Linear-time parsing 
– LL parsers  

»  Recognize LL grammar 
»  Use a top-down strategy 

– LR parsers 
»  Recognize LR grammar 
»  Use a bottom-up strategy 

Parsing complexity 

•  LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols. 

•  LR(n) : Left to right, 
Right derivation, look 
ahead at most n 
symbols. 
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• How hard is the parsing task? 
• Parsing an arbitrary context free grammar 

is O(n3) in the worst case. 
• E.g., it can take time proportional to the 

cube of the number of symbols in the input 
• So what? 
• This is bad! 

Parsing complexity 
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• If it takes t1 seconds to parse your C program 
with n lines of code, how long will it take to 
take if you make it twice as long? 
- time(n) = t1,  time(2n) = 23 * time(n) 
- 8 times longer 

• Suppose v3 of your code is has 10n lines? 
• 103 or 1000 times as long 

• Windows Vista was said to have ~50M lines 
of code 

Parsing complexity 
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• Practical parsers have time complexity that is linear 
in the number of tokens, i.e., O(n) 

•  If v2.0 of your program is twice as long, it will take 
twice as long to parse 

• This is achieved by modifying the grammar so it can 
be parsed more easily 

• Linear-time parsing 
–  LL parsers  

»  Recognize LL grammar 
»  Use a top-down strategy 

–  LR parsers 
»  Recognize LR grammar 
»  Use a bottom-up strategy 

Linear complexity parsing 

•  LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols. 

•  LR(n) : Left to right, 
Right derivation, look 
ahead at most n 
symbols. 
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• Each nonterminal in the grammar has a      
subprogram associated with it; the 
subprogram parses all sentential forms that 
the nonterminal can generate 

• The recursive descent parsing subprograms 
are built directly from the grammar rules  

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?) 

Recursive Decent Parsing 



CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Hierarchy of Linear Parsers 

•  Basic containment relationship 
–  All CFGs can be recognized by LR parser 
–  Only a subset of all the CFGs can be recognized by LL parsers 
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Recursive Decent Parsing Example 

Example: For the grammar: 

 <term> -> <factor> {(*|/)<factor>} 

We could use the following recursive 
descent parsing subprogram 
  void term() {  
    factor();     /* parse first factor*/ 
    while (next_token == ast_code ||  
          next_token == slash_code) { 
      lexical();  /* get next token */ 
      factor();   /* parse next factor */ 
    } 
  }  
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The 
Chomsky 
hierarchy 

• The Chomsky hierarchy 
has four types of languages and their associated grammars and machines.  

• They form a strict hierarchy; that is, regular languages < context-free 
languages < context-sensitive languages < recursively enumerable languages.  

• The syntax of computer languages are usually describable by regular or 
context free languages. 
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Summary 

•  The syntax of a programming language is usually 
defined using BNF or a context free grammar 

•  In addition to defining what programs are 
syntactically legal, a grammar also encodes 
meaningful or useful abstractions (e.g., block of 
statements) 

•  Typical syntactic notions like operator precedence, 
associativity, sequences, optional statements, etc. 
can be encoded in grammars 

•  A parser is based on a grammar and takes an input 
string, does a derivation and produces a parse tree. 


