
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

3
Syntax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Some Preliminaries
• For the next several weeks we’ll look at how one

can define a programming language
• What is a language, anyway?

“Language is a system of gestures, grammar, signs,
sounds, symbols, or words, which is used to represent
and communicate concepts, ideas, meanings, and
thoughts”

• Human language is a way to communicate
representations from one (human) mind to another

• What about a programming language?
A way to communicate representations (e.g., of data or a
procedure) between human minds and/or machines

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

We usually break down the problem of defining a
programming language into two parts

• defining the PL’s syntax
• defining the PL’s semantics

Syntax - the form or structure of the expressions,
statements, and program units

Semantics - the meaning of the expressions,
statements, and program units

Note: There is not always a clear boundary
between the two

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Why and How
Why? We want specifications for several

communities:
• Other language designers
•  Implementers
• Machines?
• Programmers (the users of the language)

How? One ways is via natural language descriptions
(e.g., user’s manuals, text books) but there are a
number of techniques for specifying the syntax and
semantics that are more formal.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

This is an overview of the standard
process of turning a text file into an
executable program.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntax Overview

•  Language preliminaries
•  Context-free grammars and BNF
•  Syntax diagrams

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A sentence is a string of characters over some
alphabet (e.g., def add1(n): return n + 1)

A language is a set of sentences

A lexeme is the lowest level syntactic unit of a
language (e.g., *, add1, begin)

A token is a category of lexemes (e.g., identifier)

Formal approaches to describing syntax:
• Recognizers - used in compilers

• Generators - what we'll study

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lexical Structure of
Programming Languages

•  The structure of its lexemes (words or tokens)
– token is a category of lexeme

•  The scanning phase (lexical analyser) collects
characters into tokens

•  Parsing phase (syntactic analyser) determines
syntactic structure

Stream of
characters

Result of
parsing

tokens and
values

lexical

analyser

Syntactic

analyser

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Grammars
Context-Free Grammars

• Developed by Noam Chomsky in the mid-1950s.
(View Chomsky vs. Bill Buckley on YouTube)

• Language generators, meant to describe the syntax of
natural languages.

• Define a class of languages called context-free
languages.

Backus Normal/Naur Form (1959)
•  Invented by John Backus to describe Algol 58 and

refined by Peter Naur for Algol 60.
• BNF is equivalent to context-free grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Six participants in the 1960 Algol conference in Paris. This
was taken at the 1974 ACM conference on the history of
programming languages. Top: John McCarthy, Fritz Bauer,
Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.

NOAM CHOMSKY,
MIT Institute Professor;
Professor of Linguistics,
Linguistic Theory,
Syntax, Semantics,
Philosophy of Language

• Chomsky & Backus independently came up with equiv-
alent formalisms for specifying the syntax of a language

• Backus focused on a practical way of specifying an
artificial language, like Algol

• Chomsky made fundamental contributions to mathe-
matical linguistics and was motivated by the study of
human languages.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A metalanguage is a language used to describe
another language.

In BNF, abstractions are used to represent
classes of syntactic structures -- they act like
syntactic variables (also called nonterminal
symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while
statement. Often the word production is used for rule.

BNF (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF
• A rule has a left-hand side (LHS) which is a single

non-terminal symbol and a right-hand side (RHS),
one or more terminal or non-terminal symbols

• A grammar is a finite, nonempty set of rules
• A non-terminal symbol is “defined” by its rules.
• Multiple rules can be combined with the vertical-bar

(|) symbol (read as “or”)
• These two rules:
<stmts> ::= <stmt>
<stmts> ::= <stmt> ; <stmts>

are equivalent to this one:
<stmts> ::= <stmt> | <stmt> ; <stmts>

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Non-terminals, pre-terminals & terminals

•  A non-terminal symbol is any symbol that is on the LHS of
a rule. These represent abstractions in the language (e.g.,
if-then-else-statement in
<if-then-else-statement> ::= if <test>
then <statement> else <statement>

•  A terminal symbol is any symbol that is not on the LHS of
any rule. AKA lexemes. These are the literal symbols that
will appear in a program (e.g., if, then, else in rules above).

•  A pre-terminal symbol is a non-terminal that appears on the
LHS of >= 1 rule(s), but in every case, the RHSs consist of
single terminal symbols, e.g., <digit> in
<digit> ::= 0 | 1 | 2 | 3 … 7 | 8 | 9

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Repetition is done with recursion

• An <ident_list> is a sequence of one or more
<ident>s separated by commas.

<ident_list> ::= <ident> |

 <ident> , <ident_list>

BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF Example
Here is an example of a simple grammar for a small
subset of English
A sentence is a noun phrase and verb phrase followed by
a period.
<sentence> ::= <nounPhrase> <verbPhrase> .!
<nounPhrase> ::= <article> <noun>!
<article> ::= a | the!
<noun> ::= man | apple | worm | penguin!
<verbPhrase> ::= <verb>|<verb><nounPhrase>!
<verb> ::= eats | throws | sees | is!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Derivations
•  A derivation is a repeated application of rules, starting

with the start symbol and ending with a sentence
consisting only of terminal symbols

•  It demonstrates, or proves that the derived sentence is
“generated” by the grammar and is thus in the language
that the grammar defines

•  As an example, consider our baby English grammar
<sentence> ::= <nounPhrase><verbPhrase>.!
<nounPhrase> ::= <article><noun>!
<article> ::= a | the!
<noun> ::= man | apple | worm | penguin!
<verbPhrase> ::= <verb> | <verb><nounPhrase>!
<verb> ::= eats | throws | sees | is

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Derivation using BNF

Here is a derivation for “the man eats the apple.”
<sentence> -> <nounPhrase><verbPhrase>.
 <article><noun><verbPhrase>.
 the<noun><verbPhrase>.
 the man <verbPhrase>.
 the man <verb><nounPhrase>.
 the man eats <nounPhrase>.
 the man eats <article> < noun>.
 the man eats the <noun>.
 the man eats the apple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Every string of symbols in the derivation is
a sentential form

A sentence is a sentential form that has only
terminal symbols

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded in the next step

A derivation may be either leftmost or
rightmost or something else

Derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another BNF Example
<program> -> <stmts>
<stmts> -> <stmt>
 | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Here is a derivation:
<program> => <stmts>
 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const!

Note: There is some
variation in notation
for BNF grammars.
Here we are using ->
in the rules instead
of ::= .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Finite and Infinite languages
•  A simple language may have a finite number

of sentences
•  An example of a finite language is the set of

strings representing integers between -10**6
and +10**6

•  A finite language can be defined by
enumerating the sentences, but using a
grammar might be much easier

•  Most interesting languages have an infinite
number of sentences (why?)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Is English a finite or infinite language?

• Assume we have a finite set of words
•  Consider adding rules like the following to the

previous example
<sentence> ::= <sentence><conj><sentence>.!
<conj> ::= and | or | because

• Hint: Whenever you see recursion in a BNF
it’s likely that the language is infinite.
– When might it not be?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Parse Tree

 <program>!

 <stmts>!

 <stmt>!

 <var> = <expr>!

 a <term> + <term>!

 <var> const!

 b !

A parse tree is a hierarchical representation of
a derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another Parse Tree

<sentence>

<nounPhrase>
 <verbPhrase>

<article>
 <noun>
 <verb>
 <nounPhrase>

<article>
 <noun>

the
 man
 eats

the
 apple

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A grammar is ambiguous if and only
if (iff) it generates a sentential form
that has two or more distinct parse
trees.

Ambiguous grammars are, in general,
very undesirable in formal languages.

We can sometimes eliminate
ambiguity by changing the grammar.

Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• I saw the man on the hill with a
telescope

• Time flies like an arrow

• Fruit flies like a banana

• Buffalo Buffalo buffalo

• verb, city, or beast?

Ambiguous English Sentences

See: Syntactic Ambiguity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

An ambiguous grammar
Here is an ambiguous grammar for
expressions

<e> -> <e> <op> <e>!
<e> -> 1|2|3!
<op> -> +|-|*|/!

The sentence 1+2*3 can lead to two
different parse trees corresponding to
1+(2*3) and (1+2)*3

Fyi… In a programming language, an expression
is some code that is evaluated and produces a
value. A statement is code that is executed and
does something.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Two parse trees for 1+2*3
<e> -> <e> <op> <e>
<e> -> 1|2|3
<op> -> +|-|*|/

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators
• The traditional operator notation introduces

many problems.
• Operators are used in

– Prefix notation: Expression (* (+ 1 3) 2) in Lisp
–  Infix notation: Expression (1 + 3) * 2 in Java
– Postfix notation: Increment foo++ in C

• Operators can have one or more operands
–  Increment in C is a one-operand operator: foo++
– Subtraction in C is a two-operand operator: foo - bar
– Conditional expression in C is a three-operand

operators: (foo == 3 ? 0 : 1)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator notation
•  So, how do we interpret expressions like

(a) 2 + 3 + 4
(b) 2 + 3 * 4

•  While you might argue that it doesn’t matter for (a), it
can for different operators (2 ** 3 ** 4) or when the
limits of representation are hit (e.g., round off in
numbers, e.g., 1+1+1+1+1+1+1+1+1+1+1+10**6)

•  Concepts:
– Explaining rules in terms of operator precedence

and associativity
– Realizing the rules in grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Precedence and Associativity
• Precedence and associativity deal with the

evaluation order within expressions
• Precedence rules specify order in which operators

of different precedence level are evaluated, e.g.:
“*” Has a higher precedence that “+”, so “*” groups more
tightly than “+”

• What is the value of the expression 4 * 5 ** 6 ?
• A language’s precedence hierarchy should match

our intuitions, but the result’s not always perfect, as
in this Pascal example:

if A<B and C<D then A := 0 ;
• Pascal relational operators have lowest precedence!

if A < B and C < D then A := 0 ;

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator Precedence: Precedence Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operator Precedence: Precedence Table

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Associativity
• Associativity rules specify order in which operators

of the same precedence level are evaluated
• Operators are typically either left associative or

right associative.
• Left associativity is typical for +, - , * and /
• Right associativity is typical for _________?
• So A + B + C

– Means: (A + B) + C
– And not: A + (B + C)

• Does it matter?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operators: Associativity
•  For + and * it doesn’t matter in theory (though it can in

practice) but for – and / it matters in theory, too.
•  What should A-B-C mean?

(A – B) – C ≠ A – (B – C)
•  What is the results of 2 ** 3 ** 4 ?

– 2 ** (3 ** 4) = 2 ** 81 = 2417851639229258349412352
–  (2 ** 3) ** 4 = 8 ** 4 = 256

•  Languages diverge on this case:
–  In Fortran, ** associates from right-to-left, as is normally

the case for mathematics
–  In Ada, ** doesn’t associate; you must write the previous

expression as 2 ** (3 ** 4) to obtain the expected answer

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Associativity in C
•  In C, as in most languages, most of the operators

associate left to right
a + b + c => (a + b) + c

• The various assignment operators, however, associate
right to left
= += -= *= /= %= >>= <<= &= ^= |=

• Consider a += b += c, which is interpreted as
a += (b += c)

•  and not as
(a += b) += c

• Why?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

If we use the grammar to indicate precedence
levels of the operators, we avoid certain forms
of ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

Precedence and Associativity in Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Sentence: const – const / const

Precedence and Associativity in Grammar

Derivation:
<expr> => <expr> - <term>
 => <term> - <term>
 => const - <term>
 => const - <term> / const
 => const - const / const <expr>

 <expr> - <term>

 <term> <term> / const

 const const

Parse tree:

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Grammar (continued)

Operator associativity can also be
indicated by a grammar

<expr> -> <expr> + <expr> | const (ambiguous)!

<expr> -> <expr> + const | const (unambiguous)

 <expr>!

 <expr> + const!

 <expr> + const!

 const!

Does this grammar rule
make the + operator right
or left associative?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

An Expression Grammar
Here’s a grammar to define simple arithmetic
expressions over variables and numbers.

 Exp ::= num
 Exp ::= id
 Exp ::= UnOp Exp
 Exp := Exp BinOp Exp
 Exp ::= '(' Exp ')'

 UnOp ::= '+'
 UnOp ::= '-'
 BinOp ::= '+' | '-' | '*' | '/

Here’s another
common notation
variant where
single quotes are
used to indicate
terminal symbols
and unquoted
symbols are taken
as non-terminals.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A derivation
Here’s a derivation of a+b*2 using the expression grammar:

 Exp => ! ! ! // Exp ::= Exp BinOp Exp!
Exp BinOp Exp => // Exp ::= id!
id BinOp Exp => // BinOp ::= '+'!
id + Exp => // Exp ::= Exp BinOp Exp!
id + Exp BinOp Exp => // Exp ::= num!
id + Exp BinOp num => // Exp ::= id!
id + id BinOp num => // BinOp ::= '*'!
id + id * num!
a + b * 2!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A parse tree

A parse tree for a+b*2:

 __Exp__!
 / | \!
 Exp BinOp Exp!
 | | / | \!
 id + Exp BinOp Exp!
 | | | |!
 a id * num!
 | |!
 b 2!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Precedence
•  As we have said, precedence refers to the order in which

operations are evaluated.
•  Usual convention: exponents > mult div > add sub.
•  So, deal with operations in categories: exponents, mulops,

addops.
•  Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp!
Exp ::= Term!
Term ::= Term MulOp Term!
Term ::= Factor!
Factor ::= '(' + Exp + ')‘!
Factor ::= num | id!
AddOp ::= '+' | '-’!
MulOp ::= '*' | '/'!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Associativity

• Associativity refers to the order in which two
of the same operation should be computed
• 3+4+5 = (3+4)+5, left associative (all

BinOps)
• 3^4^5 = 3^(4^5), right associative

• Conditionals right associate but have a
wrinkle: an else clause associates with closest
unmatched if

if a then if b then c else d
= if a then (if b then c else d)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Adding associativity to the grammar

Adding associativity to the BinOp expression
grammar

 Exp ::= Exp AddOp Term!
 Exp ::= Term !
 Term ::= Term MulOp Factor!
 Term ::= Factor !
 Factor ::= '(' Exp ')'!
 Factor ::= num | id!
 AddOp ::= '+' | '-'!
 MulOp ::= '*' | '/'!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Exp ::= Exp AddOp Term!
Exp ::= Term!
Term ::= Term MulOp Factor!

Term ::= Factor !
Factor ::= '(' Exp ')’!
Factor ::= num | id!
AddOp ::= '+' | '-‘!

MulOp ::= '*' | '/'!

Grammar
Exp =>!
Exp AddOp Term =>!
Exp AddOp Exp AddOp Term =>!
Term AddOp Exp AddOp Term =>!
Factor AddOp Exp AddOp Term =>!
Num AddOp Exp AddOp Term =>!
Num + Exp AddOp Term =>!
Num + Factor AddOp Term =>!
Num + Num AddOp Term =>!
Num + Num - Term =>!
Num + Num - Factor =>!
Num + Num - Num!

Derivation

E

A E

A E

T

F

num

T

F

num
T

F

num

-

+

Parse tree

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals
• Most languages allow two forms for if:

–  if x < 0 then x = -x
–  if x < 0 then x = -x else x = x+1

• There is a standard rule for determining which
if expression an else clause attaches to
–  If x < 0 then if y < 0 x = -1 else x = -2

• The rule:
–  An else clause attaches to the nearest if to

the left that does not yet have an else clause

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals
• Goal: to create a correct grammar for conditionals.
•  It needs to be non-ambiguous and the precedence is else

with nearest unmatched if
Statement ::= Conditional | 'whatever'!
Conditional ::= 'if' test 'then' Statement 'else‘ Statement!
Conditional ::= 'if' test 'then' Statement!

• The grammar is ambiguous. The first Conditional
allows unmatched ifs to be Conditionals

– Good: if test then (if test then whatever else whatever)
– Bad: if test then (if test then whatever) else whatever

• Goal: write a grammar that forces an else clause to
attach to the nearest if w/o an else clause

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: conditionals
The final unambiguous grammar

Statement ::= Matched | Unmatched

Matched ::= 'if' test 'then' Matched 'else' Matched
 | 'whatever'

Unmatched ::= 'if' test 'then' Statement

 | 'if' test 'then' Matched ‘else’ Unmatched

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntactic sugar: doesn’t extend the expressive power
of the formalism, but does make it easier to use, i.e.,
more readable and more writable
• Optional parts are placed in brackets ([])
 <proc_call> -> ident [(<expr_list>)]
• Put alternative parts of RHSs in parentheses and
separate them with vertical bars
 <term> -> <term> (+ | -) const
• Put repetitions (0 or more) in braces ({})
 <ident> -> letter {letter | digit}

Extended BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

BNF:
<expr> -> <expr> + <term>

 | <expr> - <term>

 | <term>

<term> -> <term> * <factor>

 | <term> / <factor>

 | <factor>

EBNF:!
<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF vs EBNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Syntax Graphs
Syntax Graphs - Put the terminals in circles or ellipses
and put the nonterminals in rectangles; connect with
lines with arrowheads

 e.g., Pascal type declarations

Provides an intuitive, graphical notation.!

..!

type_identifier!

(! identifier!)!

,!

constant! constant!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Parsing
•  A grammar describes the strings of tokens that are

syntactically legal in a PL
•  A recogniser simply accepts or rejects strings.
•  A generator produces sentences in the language

described by the grammar
•  A parser construct a derivation or parse tree for a

sentence (if possible)
•  Two common types of parsers are:

– bottom-up or data driven
–  top-down or hypothesis driven

•  A recursive descent parser is a way to implement a
top-down parser that is particularly simple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• How hard is the parsing task?
• Parsing an arbitrary context free grammar is O(n3),

e.g., it can take time proportional the cube of the
number of symbols in the input. This is bad!

•  If we constrain the grammar somewhat, we can
always parse in linear time. This is good!

• Linear-time parsing
– LL parsers

»  Recognize LL grammar
»  Use a top-down strategy

– LR parsers
»  Recognize LR grammar
»  Use a bottom-up strategy

Parsing complexity

•  LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

•  LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• How hard is the parsing task?
• Parsing an arbitrary context free grammar

is O(n3) in the worst case.
• E.g., it can take time proportional to the

cube of the number of symbols in the input
• So what?
• This is bad!

Parsing complexity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• If it takes t1 seconds to parse your C program
with n lines of code, how long will it take to
take if you make it twice as long?
- time(n) = t1, time(2n) = 23 * time(n)
- 8 times longer

• Suppose v3 of your code is has 10n lines?
• 103 or 1000 times as long

• Windows Vista was said to have ~50M lines
of code

Parsing complexity

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Practical parsers have time complexity that is linear
in the number of tokens, i.e., O(n)

•  If v2.0 of your program is twice as long, it will take
twice as long to parse

• This is achieved by modifying the grammar so it can
be parsed more easily

• Linear-time parsing
–  LL parsers

»  Recognize LL grammar
»  Use a top-down strategy

–  LR parsers
»  Recognize LR grammar
»  Use a bottom-up strategy

Linear complexity parsing

•  LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

•  LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

• The recursive descent parsing subprograms
are built directly from the grammar rules

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Decent Parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Hierarchy of Linear Parsers

•  Basic containment relationship
–  All CFGs can be recognized by LR parser
–  Only a subset of all the CFGs can be recognized by LL parsers

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Recursive Decent Parsing Example

Example: For the grammar:

 <term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram
 void term() {
 factor(); /* parse first factor*/
 while (next_token == ast_code ||
 next_token == slash_code) {
 lexical(); /* get next token */
 factor(); /* parse next factor */
 }
 }

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The
Chomsky
hierarchy

• The Chomsky hierarchy
has four types of languages and their associated grammars and machines.

• They form a strict hierarchy; that is, regular languages < context-free
languages < context-sensitive languages < recursively enumerable languages.

• The syntax of computer languages are usually describable by regular or
context free languages.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Summary

•  The syntax of a programming language is usually
defined using BNF or a context free grammar

•  In addition to defining what programs are
syntactically legal, a grammar also encodes
meaningful or useful abstractions (e.g., block of
statements)

•  Typical syntactic notions like operator precedence,
associativity, sequences, optional statements, etc.
can be encoded in grammars

•  A parser is based on a grammar and takes an input
string, does a derivation and produces a parse tree.

