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History of the Lisp Language

The following information is derived from the history section of dpANS Common Lisp. Lisp is a family of
languages with a long history. Early key ideas in Lisp were developed by John McCarthy during the 1956
Dartmouth Summer Research Project on Artificial Intelligence. McCarthy’s motivation was to develop an
algebraic list processing language for artificial intelligence work. Implementation efforts for early dialects of Lisp
were undertaken on the IBM 704, the IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC
PDP-6, and the PDP-10. The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s
there were two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp. For
further information about very early Lisp dialects, $&e Anatomy of Lispr Lisp 1.5 Programmer’s Manual

MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also introduced the
concept of functions that could take a variable number of arguments, macros, arrays, non—-local dynamic exits, fast
arithmetic, the first good Lisp compiler, and an emphasis on execution speed. For further information about
Maclisp, seeMaclisp Reference Manual, Revisionidrhe Revised Maclisp Manual

Interlisp introduced many ideas into Lisp programming environments and methodology. One of the Interlisp ideas
that influenced Common Lisp was an iteration construct implemented by Warren Teitelman that insfocgd the
macro used both on the Lisp Machines and in MacLisp, and now in Common Lisp. For further information about

Interlisp, sednterlisp Reference Manual

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090, later work focussed on the

DEC PDP-6 and, later, PDP-10 computers, the latter being the mainstay of Lisp and artificial intelligence work at
such places as Massachusetts Institute of Technology (MIT), Stanford University, and Carnegie Mellon University
(CMU) from the mid-1960’s through much of the 1970’s. The PDP-10 computer and its predecessor the PDP-6
computer were, by design, especially well-suited to Lisp because they had 36-bit words and 18-bit addresses. This
architecture allowed a cons cell to be stored in one word; single instructions could extract the car and cdr parts. The
PDP-6 and PDP-10 had fast, powerful stack instructions that enabled fast function calling. But the limitations of

the PDP-10 were evident by 1973: it supported a small number of researchers using Lisp, and the small, 18-bit
address space (262,144 36-bit words) limited the size of a single program. One response to the address space
problem was the Lisp Machine, a special-purpose computer designed to run Lisp programs. The other response was
to use general-purpose computers with address spaces larger than 18 bits, such as the DEC VAX and the S-1 Mark
lIA. For further information about S-1 Common Lisp, §8e-1 Common Lisp Implementation.”

The Lisp machine concept was developed in the late 1960's. In the early 1970’s, Peter Deutsch, working with
Daniel Bobrow, implemented a Lisp on the Alto, a single—user minicomputer, using microcode to interpret a
byte—code implementation language. Shortly thereafter, Richard Greenblatt began work on a different hardware
and instruction set design at MIT. Although the Alto was not a total success as a Lisp machine, a dialect of Interlisp
known as Interlisp—D became available on the D-series machines manufactured by Xerox——-the Dorado,
Dandelion, Dandetiger, and Dove (or Daybreak). An upward—compatible extension of MacLisp called Lisp
Machine Lisp became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp
Machines (LMI), and Symbolics were on the market by 1981. For further information about Lisp Machine Lisp, see
Lisp Machine Manual

During the late 1970's, Lisp Machine Lisp began to expand towards a much fuller language. Sophisticated lambda
lists, setf, multiple values, and structures like those in Common Lisp are the results of early experimentation with
programming styles by the Lisp Machine group. Jonl White and others migrated these features to MacLisp. Around
1980, Scott Fahiman and others at CMU began work on a Lisp to run on the Scientific Personal Integrated
Computing Environment (SPICE) workstation. One of the goals of the project was to design a simpler dialect than
Lisp Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Implementation of Lisp (NIL)
for the VAX, which was headed by White. One of the stated goals of the NIL project was to fix many of the
historic, but annoying, problems with Lisp while retaining significant compatibility with MacLisp. At about the
same time, a research group at Stanford University and Lawrence Livermore National Laboratory headed by



Richard P. Gabriel began the design of a Lisp to run on the S—1 Mark IIA supercomputer. S—1 Lisp, never
completely functional, was the test bed for adapting advanced compiler techniques to Lisp implementation.
Eventually the S—1 and NIL groups collaborated. For further information about the NIL projettillsee—A

Perspective.”

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and Martin Griss at the
University of Utah defined Standard Lisp——-a subset of Lisp 1.5 and other dialects———to transport REDUCE, a
symbolic algebra system. During the 1970’s, the Utah group implemented first a retargetable optimizing compiler
for Standard Lisp, and then an extended implementation known as Portable Standard Lisp (PSL). By the mid
1980's, PSL ran on about a dozen kinds of computers. For further information about Standard L&tpanseed

LISP Report.”

PSL and Franz Lisp———a MacLisp-like dialect for Unix machines——-were the first examples of widely available
Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the 1970’s: Scheme. Scheme,
designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp whose design brought to Lisp some
of the ideas from programming language semantics developed in the 1960’s. Sussman was one of the prime
innovators behind many other advances in Lisp technology from the late 1960’s through the 1970’s. The major
contributions of Scheme were lexical scoping, lexical closures, first—class continuations, and simplified syntax (no
separation of value cells and function cells). Some of these contributions made a large impact on the design of
Common Lisp. For further information about Scheme |E&& Standard for the Scheme Programming Language

or “Revised”4 Report on the Algorithmic Language Scheme.”

In the late 1970’s object-oriented programming concepts started to make a strong impact on Lisp. At MIT, certain
ideas from Smalltalk made their way into several widely used programming systems. Flavors, an object-oriented
programming system with multiple inheritance, was developed at MIT for the Lisp machine community by

Howard Cannon and others. At Xerox, the experience with Smalltalk and Knowledge Representation Language
(KRL) led to the development of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS.
For further information on Smalltalk, s€enalltalk—80: The Language and its Implementatieor further

information on Flavors, ség&lavors: A Non—Hierarchical Approach to Object—Oriented Programming.”

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was developed
specifically for X3J13's standardization effort, and was separately written/i@nimmon Lisp Object System
Specification.” However, minor details of its design have changed slightly since that publication, and that paper
should not be taken as an authoritative reference to the semantics of the Common Lisp Object System.

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock—hardware implementation groups were
developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE project at CMU was
developing a MacLisp-like dialect of Lisp called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp community, Symbolics, the
SPICE project, the NIL project, and the S—1 Lisp project joined together to define Common Lisp. Initially
spearheaded by White and Gabiriel, the driving force behind this grassroots effort was provided by Fahlman, Daniel
Weinreb, David Moon, Steele, and Gabriel. Common Lisp was designed as a description of a family of languages.
The primary influences on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-1 Lisp, Spice Lisp, and
SchemeCommon Lisp: The Languagea description of that design. Its semantics were intentionally

underspecified in places where it was felt that a tight specification would overly constrain Common Lisp research
and use.

In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common Lisp standard.
Because of the acceptance of Common Lisp, the goals of this group differed from those of the original designers.
These new goals included stricter standardization for portability, an object-oriented programming system, a
condition system, iteration facilities, and a way to handle large character sets. To accommodate those goals, a new
language specification was developed.

[Note: Gabriel and Steele@"The Evolution of Lisp" 1993 ACM History of Programming Languages
conference, is also available — miller]
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