
ISBN 0-321-49362-1	

Chapter 14

Exception Handling
and Event Handling

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 14 Topics

•  Introduction to Exception Handling
•  Exception Handling in Ada
•  Exception Handling in C++
•  Exception Handling in Java
•  Introduction to Event Handling
•  Event Handling with Java

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Introduction to Exception Handling

•  In a language without exception handling
–  When an exception occurs, control goes to the

operating system, where a message is displayed
and the program is terminated

•  In a language with exception handling
–  Programs are allowed to trap some exceptions,

thereby providing the possibility of fixing the
problem and continuing

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Basic Concepts

•  Many languages allow programs to trap input/
output errors (including EOF)

•  An exception is any unusual event, either
erroneous or not, detectable by either hardware or
software, that may require special processing

•  The special processing that may be required after
detection of an exception is called exception
handling

•  The exception handling code unit is called an
exception handler

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Exception Handling Alternatives
•  An exception is raised when its associated event

occurs
•  A language that does not have exception handling

capabilities can still define, detect, raise, and
handle exceptions (user defined, software detected)

•  Alternatives:
–  Send an auxiliary parameter or use the return value to

indicate the return status of a subprogram
–  Pass a label parameter to all subprograms (error return is

to the passed label)
–  Pass an exception handling subprogram to all

subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Advantages of Built-in Exception
Handling

•  Error detection code is tedious to write and
it clutters the program

•  Exception handling encourages
programmers to consider many different
possible errors

•  Exception propagation allows a high level
of reuse of exception handling code

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Design Issues (continued)

• How and where are exception handlers
specified and what is their scope?

• How is an exception occurrence bound to
an exception handler?

• Can information about the exception be
passed to the handler?

• Where does execution continue, if at all,
after an exception handler completes its
execution? (continuation vs. resumption)

•  Is some form of finalization provided?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Design Issues

• How are user-defined exceptions specified?
•  Should there be default exception handlers

for programs that do not provide their own?
• Can built-in exceptions be explicitly raised?
• Are hardware-detectable errors treated as

exceptions that can be handled?
• Are there any built-in exceptions?
• How can exceptions be disabled, if at all?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Exception Handling Control Flow

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Exception Handling in Ada

•  The frame of an exception handler in Ada is
either a subprogram body, a package body,
a task, or a block

•  Because exception handlers are usually
local to the code in which the exception can
be raised, they do not have parameters

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Ada Exception Handlers
•  Handler form:
 when exception_choice{|exception_choice} =>
statement_sequence

 ...
 [when others =>

 statement_sequence]

 exception_choice form:
 exception_name | others

•  Handlers are placed at the end of the block or unit
in which they occur

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Binding Exceptions to Handlers

•  If the block or unit in which an exception is
raised does not have a handler for that
exception, the exception is propagated
elsewhere to be handled
–  Procedures - propagate it to the caller
–  Blocks - propagate it to the scope in which it

appears
–  Package body - propagate it to the declaration

part of the unit that declared the package (if it is
a library unit, the program is terminated)

–  Task - no propagation; if it has a handler,
execute it; in either case, mark it "completed"

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Continuation

•  The block or unit that raises an exception
but does not handle it is always terminated
(also any block or unit to which it is
propagated that does not handle it)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Other Design Choices

• User-defined Exceptions form:
 exception_name_list : exception;

•  Raising Exceptions form:
 raise [exception_name]

–  (the exception name is not required if it is in a
handler--in this case, it propagates the same
exception)

•  Exception conditions can be disabled with:
 pragma SUPPRESS(exception_list)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Predefined Exceptions

•  CONSTRAINT_ERROR - index constraints, range
constraints, etc.

•  NUMERIC_ERROR - numeric operation cannot return
a correct value (overflow, division by zero, etc.)

•  PROGRAM_ERROR - call to a subprogram whose
body has not been elaborated

•  STORAGE_ERROR - system runs out of heap
•  TASKING_ERROR - an error associated with tasks

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Evaluation

•  The Ada design for exception handling
embodies the state-of-the-art in language
design in 1980

• Ada was the only widely used language with
exception handling until it was added to C+
+

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Exception Handling in C++

• Added to C++ in 1990
• Design is based on that of CLU, Ada, and

ML

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

C++ Exception Handlers

•  Exception Handlers Form:
 try {
 -- code that is expected to raise an exception
 }
 catch (formal parameter) {
 -- handler code
 }
 ...
 catch (formal parameter) {
 -- handler code
 }

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

The catch Function

•  catch is the name of all handlers--it is an
overloaded name, so the formal parameter
of each must be unique

•  The formal parameter need not have a
variable
–  It can be simply a type name to distinguish the

handler it is in from others
•  The formal parameter can be used to

transfer information to the handler
•  The formal parameter can be an ellipsis, in

which case it handles all exceptions not yet
handled

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Throwing Exceptions

•  Exceptions are all raised explicitly by the
statement:

 throw [expression];
•  The brackets are metasymbols
• A throw without an operand can only

appear in a handler; when it appears, it
simply re-raises the exception, which is
then handled elsewhere

•  The type of the expression disambiguates
the intended handler

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Unhandled Exceptions

• An unhandled exception is propagated to
the caller of the function in which it is
raised

•  This propagation continues to the main
function

•  If no handler is found, the default handler
is called

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Continuation

• After a handler completes its execution,
control flows to the first statement after
the last handler in the sequence of
handlers of which it is an element

• Other design choices
–  All exceptions are user-defined
–  Exceptions are neither specified nor declared
–  The default handler, unexpected, simply

terminates the program; unexpected can be
redefined by the user

–  Functions can list the exceptions they may raise
–  Without a specification, a function can raise any

exception (the throw clause)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Evaluation

•  It is odd that exceptions are not named and
that hardware- and system software-
detectable exceptions cannot be handled

•  Binding exceptions to handlers through the
type of the parameter certainly does not
promote readability

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Exception Handling in Java

•  Based on that of C++, but more in line with
OOP philosophy

• All exceptions are objects of classes that
are descendants of the Throwable class

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Classes of Exceptions

•  The Java library includes two subclasses of
Throwable :
–  Error

• Thrown by the Java interpreter for events such as heap
overflow

• Never handled by user programs
–  Exception

• User-defined exceptions are usually subclasses of this
• Has two predefined subclasses, IOException and
RuntimeException (e.g.,
ArrayIndexOutOfBoundsException and
NullPointerException

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Java Exception Handlers

•  Like those of C++, except every catch
requires a named parameter and all
parameters must be descendants of
Throwable

•  Syntax of try clause is exactly that of C++
•  Exceptions are thrown with throw, as in C+

+, but often the throw includes the new
operator to create the object, as in:

 throw new MyException();

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Binding Exceptions to Handlers

•  Binding an exception to a handler is simpler
in Java than it is in C++
–  An exception is bound to the first handler with a

parameter is the same class as the thrown
object or an ancestor of it

• An exception can be handled and rethrown
by including a throw in the handler (a
handler could also throw a different
exception)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Continuation

•  If no handler is found in the try construct, the
search is continued in the nearest enclosing try
construct, etc.

•  If no handler is found in the method, the exception
is propagated to the method’s caller

•  If no handler is found (all the way to main), the
program is terminated

•  To insure that all exceptions are caught, a handler
can be included in any try construct that catches
all exceptions
–  Simply use an Exception class parameter
–  Of course, it must be the last in the try construct

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Checked and Unchecked Exceptions

•  The Java throws clause is quite different
from the throw clause of C++

•  Exceptions of class Error and
RunTimeException and all of their
descendants are called unchecked
exceptions; all other exceptions are called
checked exceptions

• Checked exceptions that may be thrown by
a method must be either:
–  Listed in the throws clause, or
–  Handled in the method

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Other Design Choices

•  A method cannot declare more exceptions in its
throws clause than the method it overrides

•  A method that calls a method that lists a particular
checked exception in its throws clause has three
alternatives for dealing with that exception:
–  Catch and handle the exception
–  Catch the exception and throw an exception that is listed

in its own throws clause
–  Declare it in its throws clause and do not handle it

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

The finally Clause

• Can appear at the end of a try construct
•  Form:

finally {

...

}

•  Purpose: To specify code that is to be
executed, regardless of what happens in
the try construct

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Example

•  A try construct with a finally clause can be used
outside exception handling

 try {
 for (index = 0; index < 100; index++) {
 …
 if (…) {
 return;
 } //** end of if
 } //** end of try clause
 finally {
 …
 } //** end of try construct

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Assertions

•  Statements in the program declaring a boolean
expression regarding the current state of the
computation

•  When evaluated to true nothing happens
•  When evaluated to false an AssertionError

exception is thrown
•  Can be disabled during runtime without program

modification or recompilation
•  Two forms

–  assert condition;
–  assert condition: expression;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Evaluation

•  The types of exceptions makes more sense
than in the case of C++

•  The throws clause is better than that of C+
+ (The throw clause in C++ says little to
the programmer)

•  The finally clause is often useful
•  The Java interpreter throws a variety of

exceptions that can be handled by user
programs

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Introduction to Event Handling

• An event is created by an external action
such as a user interaction through a GUI

•  The event handler is a segment of code that
is called in response to an event

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Java Swing GUI Components

•  Text box is an object of class JTextField
•  Radio button is an object of class JRadioButton
•  Applet’s display is a frame, a multilayered

structure
•  Content pane is one layer, where applets put

output
•  GUI components can be placed in a frame
•  Layout manager objects are used to control the

placement of components

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

The Java Event Model

• User interactions with GUI components
create events that can be caught by event
handlers, called event listeners

• An event generator tells a listener of an
event by sending a message

• An interface is used to make event-
handling methods conform to a standard
protocol

• A class that implements a listener must
implement an interface for the listener

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

The Java Event Model (continued)

• One class of events is ItemEvent, which is
associated with the event of clicking a
checkbox, a radio button, or a list item

•  The ItemListener interface prescribes a
method, itemStateChanged, which is a
handler for ItemEvent events

•  The listener is created with addItemListener

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

Summary

•  Ada provides extensive exception-handling facilities
with a comprehensive set of built-in exceptions.

•  C++ includes no predefined exceptions Exceptions
are bound to handlers by connecting the type of
expression in the throw statement to that of the
formal parameter of the catch function

•  Java exceptions are similar to C++ exceptions except
that a Java exception must be a descendant of the
Throwable class. Additionally Java includes a
finally clause

•  An event is a notification that something has
occurred that requires handling by an event handler

