
ISBN 0-321-49362-1	

Chapter 13

Concurrency

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 13 Topics
•  Introduction
•  Introduction to Subprogram-Level Concurrency
•  Semaphores
•  Monitors
•  Message Passing
•  Ada Support for Concurrency
•  Java Threads
•  C# Threads
•  Statement-Level Concurrency

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Introduction

• Concurrency can occur at four levels:
–  Machine instruction level
–  High-level language statement level
–  Unit level
–  Program level

•  Because there are no language issues in
instruction- and program-level
concurrency, they are not addressed here

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Multiprocessor Architectures
•  Late 1950s - one general-purpose processor and

one or more special-purpose processors for input
and output operations

•  Early 1960s - multiple complete processors, used
for program-level concurrency

•  Mid-1960s - multiple partial processors, used for
instruction-level concurrency

•  Single-Instruction Multiple-Data (SIMD) machines
•  Multiple-Instruction Multiple-Data (MIMD)

machines
–  Independent processors that can be synchronized (unit-

level concurrency)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Categories of Concurrency

• A thread of control in a program is the
sequence of program points reached as
control flows through the program

• Categories of Concurrency:
–  Physical concurrency - Multiple independent

processors (multiple threads of control)
–  Logical concurrency - The appearance of

physical concurrency is presented by time-
sharing one processor (software can be
designed as if there were multiple threads of
control)

• Coroutines (quasi-concurrency) have a
single thread of control

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Motivations for Studying Concurrency

•  Involves a different way of designing
software that can be very useful—many
real-world situations involve concurrency

• Multiprocessor computers capable of
physical concurrency are now widely used

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Introduction to Subprogram-Level
Concurrency
• A task or process is a program unit that can

be in concurrent execution with other
program units

•  Tasks differ from ordinary subprograms in
that:
–  A task may be implicitly started
–  When a program unit starts the execution of a

task, it is not necessarily suspended
–  When a task’s execution is completed, control

may not return to the caller
•  Tasks usually work together

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Two General Categories of Tasks

• Heavyweight tasks execute in their own
address space

•  Lightweight tasks all run in the same
address space – more efficient

• A task is disjoint if it does not communicate
with or affect the execution of any other
task in the program in any way

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Task Synchronization

• A mechanism that controls the order in
which tasks execute

•  Two kinds of synchronization
–  Cooperation synchronization
–  Competition synchronization

•  Task communication is necessary for
synchronization, provided by:  
- Shared nonlocal variables 
- Parameters 
- Message passing

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Kinds of synchronization
• Cooperation: Task A must wait for task B to

complete some specific activity before task
A can continue its execution, e.g., the
producer-consumer problem

• Competition: Two or more tasks must use
some resource that cannot be
simultaneously used, e.g., a shared counter
–  Competition is usually provided by mutually

exclusive access (approaches are discussed
later)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Need for Competition Synchronization

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Scheduler

•  Providing synchronization requires a
mechanism for delaying task execution

•  Task execution control is maintained by a
program called the scheduler, which maps
task execution onto available processors

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Task Execution States

• New - created but not yet started
•  Rready - ready to run but not currently

running (no available processor)
•  Running
•  Blocked - has been running, but

cannot now continue (usually waiting
for some event to occur)

• Dead - no longer active in any sense

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Liveness and Deadlock

•  Liveness is a characteristic that a program
unit may or may not have  
- In sequential code, it means the unit will  
 eventually complete its execution

•  In a concurrent environment, a task can
easily lose its liveness

•  If all tasks in a concurrent environment lose
their liveness, it is called deadlock

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Design Issues for Concurrency

• Competition and cooperation
synchronization

• Controlling task scheduling
• How and when tasks start and end

execution
• How and when are tasks created

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Methods of Providing Synchronization

•  Semaphores
• Monitors
• Message Passing

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Semaphores

•  Dijkstra - 1965
•  A semaphore is a data structure consisting of a

counter and a queue for storing task descriptors
•  Semaphores can be used to implement guards on

the code that accesses shared data structures
•  Semaphores have only two operations, wait and

release (originally called P and V by Dijkstra)
•  Semaphores can be used to provide both

competition and cooperation synchronization

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Cooperation Synchronization with
Semaphores

•  Example: A shared buffer
•  The buffer is implemented as an ADT with

the operations DEPOSIT and FETCH as the
only ways to access the buffer

• Use two semaphores for cooperation:
emptyspots and fullspots

•  The semaphore counters are used to store
the numbers of empty spots and full spots
in the buffer

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Cooperation Synchronization with
Semaphores (continued)

•  DEPOSIT must first check emptyspots to
see if there is room in the buffer

•  If there is room, the counter of emptyspots
is decremented and the value is inserted

•  If there is no room, the caller is stored in
the queue of emptyspots

• When DEPOSIT is finished, it must
increment the counter of fullspots

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Cooperation Synchronization with
Semaphores (continued)
•  FETCH must first check fullspots to see if

there is a value
–  If there is a full spot, the counter of fullspots

is decremented and the value is removed
–  If there are no values in the buffer, the caller

must be placed in the queue of fullspots
–  When FETCH is finished, it increments the

counter of emptyspots
•  The operations of FETCH and DEPOSIT on

the semaphores are accomplished through
two semaphore operations named wait and
release

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Semaphores: Wait Operation

wait(aSemaphore)
if aSemaphore’s counter > 0 then
 decrement aSemaphore’s counter
else
 put the caller in aSemaphore’s queue
 attempt to transfer control to a ready task
 -- if the task ready queue is empty,
 -- deadlock occurs
end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Semaphores: Release Operation

release(aSemaphore)
if aSemaphore’s queue is empty then
 increment aSemaphore’s counter
else
 put the calling task in the task ready queue
 transfer control to a task from aSemaphore’s queue
end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Producer Code

semaphore fullspots, emptyspots;
fullstops.count = 0;
emptyspots.count = BUFLEN;
task producer;
 loop
 -- produce VALUE –-
 wait (emptyspots); {wait for space}
 DEPOSIT(VALUE);
 release(fullspots); {increase filled}
 end loop;

end producer;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Consumer Code

task consumer;
 loop
 wait (fullspots);{wait till not empty}}
 FETCH(VALUE);
 release(emptyspots); {increase empty}
 -- consume VALUE –-
 end loop;

end consumer;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Competition Synchronization with
Semaphores 

• A third semaphore, named access, is used
to control access (competition
synchronization)
–  The counter of access will only have the values

0 and 1
–  Such a semaphore is called a binary semaphore

• Note that wait and release must be atomic!

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Producer Code
semaphore access, fullspots, emptyspots;
access.count = 0;
fullstops.count = 0;
emptyspots.count = BUFLEN;
task producer;
 loop
 -- produce VALUE –-
 wait(emptyspots); {wait for space}
 wait(access); {wait for access)
 DEPOSIT(VALUE);
 release(access); {relinquish access}
 release(fullspots); {increase filled}
 end loop;

end producer;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Consumer Code
task consumer;
 loop
 wait(fullspots);{wait till not empty}
 wait(access); {wait for access}
 FETCH(VALUE);
 release(access); {relinquish access}
 release(emptyspots); {increase empty}
 -- consume VALUE –-
 end loop;

end consumer;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Evaluation of Semaphores

• Misuse of semaphores can cause failures in
cooperation synchronization, e.g., the
buffer will overflow if the wait of
fullspots is left out

• Misuse of semaphores can cause failures in
competition synchronization, e.g., the
program will deadlock if the release of
access is left out

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Monitors

• Ada, Java, C#
•  The idea: encapsulate the shared data and

its operations to restrict access
• A monitor is an abstract data type for

shared data

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Competition Synchronization

•  Shared data is resident in the monitor
(rather than in the client units)

• All access resident in the monitor
–  Monitor implementation guarantee synchronized

access by allowing only one access at a time
–  Calls to monitor procedures are implicitly

queued if the monitor is busy at the time of the
call

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Cooperation Synchronization

• Cooperation between processes is still a
programming task
–  Programmer must guarantee that a shared

buffer does not experience underflow or
overflow

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Evaluation of Monitors

• A better way to provide competition
synchronization than are semaphores

•  Semaphores can be used to implement
monitors

• Monitors can be used to implement
semaphores

•  Support for cooperation synchronization is
very similar as with semaphores, so it has
the same problems

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Message Passing
• Message passing is a general model for

concurrency
–  It can model both semaphores and monitors
–  It is not just for competition synchronization

• Central idea: task communication is like
seeing a doctor--most of the time she
waits for you or you wait for her, but when
you are both ready, you get together, or
rendezvous

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Message Passing Rendezvous
•  To support concurrent tasks with message

passing, a language needs:

- A mechanism to allow a task to indicate when it
is willing to accept messages

- A way to remember who is waiting to have its
message accepted and some “fair” way of choosing
the next message

•  When a sender task’s message is accepted by a
receiver task, the actual message transmission is
called a rendezvous

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Ada Support for Concurrency

•  The Ada 83 Message-Passing Model
–  Ada tasks have specification and body parts, like

packages; the spec has the interface, which is
the collection of entry points:

 task Task_Example is
 entry ENTRY_1 (Item : in Integer);
 end Task_Example;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Task Body

•  The body task describes the action that
takes place when a rendezvous occurs

• A task that sends a message is suspended
while waiting for the message to be
accepted and during the rendezvous

•  Entry points in the spec are described with
accept clauses in the body
accept entry_name (formal parameters) do

 …

end entry_name

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Example of a Task Body
 task body Task_Example is
 begin

 loop

 accept Entry_1 (Item: in Float) do

 ...

 end Entry_1;

 end loop;

 end Task_Example;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Ada Message Passing Semantics

•  The task executes to the top of the accept
clause and waits for a message

• During execution of the accept clause, the
sender is suspended

•  accept parameters can transmit
information in either or both directions

•  Every accept clause has an associated
queue to store waiting messages

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

Rendezvous Time Lines

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

Message Passing: Server/Actor Tasks

• A task that has accept clauses, but no
other code is called a server task (the
example above is a server task)

• A task without accept clauses is called an
actor task
–  An actor task can send messages to other tasks
–  Note: A sender must know the entry name of

the receiver, but not vice versa (asymmetric)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

Graphical Representation of a
Rendezvous

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

Multiple Entry Points

•  Tasks can have more than one entry point
–  The specification task has an entry clause for

each
–  The task body has an accept clause for each
entry clause, placed in a select clause, which
is in a loop

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

A Task with Multiple Entries
task body Teller is

 loop

 select

 accept Drive_Up(formal params) do

 ...
 end Drive_Up;

 ...

 or

 accept Walk_Up(formal params) do

 ...
 end Walk_Up;

 ...

 end select;

 end loop;
 end Teller;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-44

Semantics of Tasks with Multiple
accept Clauses
•  If exactly one entry queue is nonempty, choose a

message from it
•  If more than one entry queue is nonempty,

choose one, nondeterministically, from which to
accept a message

•  If all are empty, wait
•  The construct is often called a selective wait
•  Extended accept clause - code following the

clause, but before the next clause
–  Executed concurrently with the caller

Copyright © 2009 Addison-Wesley. All rights reserved. 1-45

Cooperation Synchronization with
Message Passing 
•  Provided by Guarded accept clauses
 when not Full(Buffer) =>
 accept Deposit (New_Value) do

 ...

 end

•  An accept clause with a with a when clause is
either open or closed
–  A clause whose guard is true is called open
–  A clause whose guard is false is called closed
–  A clause without a guard is always open

Copyright © 2009 Addison-Wesley. All rights reserved. 1-46

Semantics of select with Guarded
accept Clauses:
•  select first checks the guards on all clauses
•  If exactly one is open, its queue is checked for

messages
•  If more than one are open, non-deterministically

choose a queue among them to check for messages
•  If all are closed, it is a runtime error
•  A select clause can include an else clause to

avoid the error
–  When the else clause completes, the loop

repeats

Copyright © 2009 Addison-Wesley. All rights reserved. 1-47

Example of a Task with Guarded accept
Clauses
• Note: The station may be out of gas and

there may or may not be a position
available in the garage

 task Gas_Station_Attendant is
 entry Service_Island (Car : Car_Type);

 entry Garage (Car : Car_Type);

 end Gas_Station_Attendant;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-48

Example of a Task with Guarded accept
Clauses
task body Gas_Station_Attendant is
 begin
 loop
 select
 when Gas_Available =>
 accept Service_Island (Car : Car_Type) do
 Fill_With_Gas (Car);
 end Service_Island;

 or
 when Garage_Available =>
 accept Garage (Car : Car_Type) do
 Fix (Car);
 end Garage;

 else
 Sleep;

 end select;
 end loop;
 end Gas_Station_Attendant;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-49

Competition Synchronization with
Message Passing
• Modeling mutually exclusive access to

shared data
•  Example--a shared buffer
•  Encapsulate the buffer and its operations in

a task
• Competition synchronization is implicit in

the semantics of accept clauses
–  Only one accept clause in a task can be active

at any given time

Copyright © 2009 Addison-Wesley. All rights reserved. 1-50

Task Termination

•  The execution of a task is completed if
control has reached the end of its code
body

•  If a task has created no dependent tasks
and is completed, it is terminated

•  If a task has created dependent tasks and is
completed, it is not terminated until all its
dependent tasks are terminated

Copyright © 2009 Addison-Wesley. All rights reserved. 1-51

The terminate Clause

• A terminate clause in a select is just a
terminate statement

• A terminate clause is selected when no
accept clause is open

• When a terminate is selected in a task, the
task is terminated only when its master and
all of the dependents of its master are
either completed or are waiting at a
terminate

• A block or subprogram is not left until all of
its dependent tasks are terminated

Copyright © 2009 Addison-Wesley. All rights reserved. 1-52

Message Passing Priorities

•  The priority of any task can be set with the
pragma priority
pragma Priority (expression);

•  The priority of a task applies to it only
when it is in the task ready queue

Copyright © 2009 Addison-Wesley. All rights reserved. 1-53

Binary Semaphores

•  For situations where the data to which access is to
be controlled is NOT encapsulated in a task  

task Binary_Semaphore is
 entry Wait;
 entry release;
end Binary_Semaphore;

task body Binary_Semaphore is
 begin
 loop
 accept Wait;
 accept Release;
 end loop;
end Binary_Semaphore;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-54

Concurrency in Ada 95

• Ada 95 includes Ada 83 features for
concurrency, plus two new features
–  Protected objects: A more efficient way of

implementing shared data to allow access to a
shared data structure to be done without
rendezvous

–  Asynchronous communication

Copyright © 2009 Addison-Wesley. All rights reserved. 1-55

Ada 95: Protected Objects

• A protected object is similar to an abstract
data type

• Access to a protected object is either
through messages passed to entries, as
with a task, or through protected
subprograms

• A protected procedure provides mutually
exclusive read-write access to protected
objects

• A protected function provides concurrent
read-only access to protected objects

Copyright © 2009 Addison-Wesley. All rights reserved. 1-56

Asynchronous Communication

•  Provided through asynchronous select
structures

• An asynchronous select has two
triggering alternatives, an entry clause or a
delay
–  The entry clause is triggered when sent a

message
–  The delay clause is triggered when its time limit

is reached

Copyright © 2009 Addison-Wesley. All rights reserved. 1-57

Evaluation of the Ada

• Message passing model of concurrency is
powerful and general

•  Protected objects are a better way to
provide synchronized shared data

•  In the absence of distributed processors,
the choice between monitors and tasks with
message passing is somewhat a matter of
taste

•  For distributed systems, message passing is
a better model for concurrency

Copyright © 2009 Addison-Wesley. All rights reserved. 1-58

Java Threads
•  The concurrent units in Java are methods named
run
–  A run method code can be in concurrent execution with

other such methods
–  The process in which the run methods execute is called a

thread
Class myThread extends Thread

 public void run () {…}

}

…

Thread myTh = new MyThread ();

myTh.start();

Copyright © 2009 Addison-Wesley. All rights reserved. 1-59

Controlling Thread Execution

•  The Thread class has several methods to
control the execution of threads
–  The yield is a request from the running thread

to voluntarily surrender the processor
–  The sleep method can be used by the caller of

the method to block the thread
–  The join method is used to force a method to

delay its execution until the run method of
another thread has completed its execution

Copyright © 2009 Addison-Wesley. All rights reserved. 1-60

Thread Priorities

• A thread’s default priority is the same as
the thread that create it
–  If main creates a thread, its default priority is
NORM_PRIORITY

•  Threads defined two other priority
constants, MAX_PRIORITY and
MIN_PRIORITY

•  The priority of a thread can be changed
with the methods setPriority

Copyright © 2009 Addison-Wesley. All rights reserved. 1-61

Competition Synchronization with Java
Threads
•  A method that includes the synchronized

modifier disallows any other method from running
on the object while it is in execution
…
public synchronized void deposit(int i) {…}
public synchronized int fetch() {…}
…

•  The above two methods are synchronized which
prevents them from interfering with each other

•  If only a part of a method must be run without
interference, it can be synchronized thru
synchronized statement
synchronized (expression)
 statement

Copyright © 2009 Addison-Wesley. All rights reserved. 1-62

Cooperation Synchronization with Java
Threads

• Cooperation synchronization in Java is
achieved via wait, notify, and notifyAll
methods
–  All methods are defined in Object, which is the

root class in Java, so all objects inherit them
•  The wait method must be called in a loop
•  The notify method is called to tell one

waiting thread that the event it was waiting
has happened

•  The notifyAll method awakens all of the
threads on the object’s wait list

Copyright © 2009 Addison-Wesley. All rights reserved. 1-63

Java’s Thread Evaluation

•  Java’s support for concurrency is relatively
simple but effective

• Not as powerful as Ada’s tasks

Copyright © 2009 Addison-Wesley. All rights reserved. 1-64

C# Threads

•  Loosely based on Java but there are significant
differences

•  Basic thread operations
–  Any method can run in its own thread
–  A thread is created by creating a Thread object
–  Creating a thread does not start its concurrent execution;

it must be requested through the Start method
–  A thread can be made to wait for another thread to finish

with Join
–  A thread can be suspended with Sleep
–  A thread can be terminated with Abort

Copyright © 2009 Addison-Wesley. All rights reserved. 1-65

Synchronizing Threads 

•  Three ways to synchronize C# threads
–  The Interlocked class

• Used when the only operations that need to be
synchronized are incrementing or decrementing of
an integer

–  The lock statement
• Used to mark a critical section of code in a thread
 lock (expression) {… }

–  The Monitor class
• Provides four methods that can be used to provide

more sophisticated synchronization

Copyright © 2009 Addison-Wesley. All rights reserved. 1-66

C#’s Concurrency Evaluation 

• An advance over Java threads, e.g., any
method can run its own thread

•  Thread termination is cleaner than in Java
•  Synchronization is more sophisticated

Copyright © 2009 Addison-Wesley. All rights reserved. 1-67

Statement-Level Concurrency

• Objective: Provide a mechanism that the
programmer can use to inform compiler of
ways it can map the program onto
multiprocessor architecture

• Minimize communication among
processors and the memories of the other
processors

Copyright © 2009 Addison-Wesley. All rights reserved. 1-68

High-Performance Fortran

• A collection of extensions that allow the
programmer to provide information to the
compiler to help it optimize code for
multiprocessor computers

•  Specify the number of processors, the
distribution of data over the memories of
those processors, and the alignment of
data

Copyright © 2009 Addison-Wesley. All rights reserved. 1-69

Primary HPF Specifications
• Number of processors
 !HPF$ PROCESSORS procs (n)

• Distribution of data
 !HPF$ DISTRIBUTE (kind) ONTO procs ::

 identifier_list
–  kind can be BLOCK (distribute data to processors in

blocks) or CYCLIC (distribute data to processors
one element at a time)

•  Relate the distribution of one array with that
of another

 ALIGN array1_element WITH array2_element

Copyright © 2009 Addison-Wesley. All rights reserved. 1-70

Statement-Level Concurrency Example

 REAL list_1(1000), list_2(1000)

 INTEGER list_3(500), list_4(501)

!HPF$ PROCESSORS proc (10)

!HPF$ DISTRIBUTE (BLOCK) ONTO procs ::

 list_1, list_2

!HPF$ ALIGN list_1(index) WITH

 list_4 (index+1)

 …

 list_1 (index) = list_2(index)

 list_3(index) = list_4(index+1)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-71

Statement-Level Concurrency
(continued)

•  FORALL statement is used to specify a list
of statements that may be executed
concurrently

 FORALL (index = 1:1000)

 list_1(index) = list_2
(index)

•  Specifies that all 1,000 RHSs of the
assignments can be evaluated before any
assignment takes place

Copyright © 2009 Addison-Wesley. All rights reserved. 1-72

Summary

•  Concurrent execution can be at the instruction,
statement, or subprogram level

•  Physical concurrency: when multiple processors are
used to execute concurrent units

•  Logical concurrency: concurrent united are
executed on a single processor

•  Two primary facilities to support subprogram
concurrency: competition synchronization and
cooperation synchronization

•  Mechanisms: semaphores, monitors, rendezvous,
threads

•  High-Performance Fortran provides statements for
specifying how data is to be distributed over the
memory units connected to multiple processors

