
ISBN 0-321-49362-1	

Chapter 11

Abstract Data Types
and Encapsulation
Concepts

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 11 Topics

•  The Concept of Abstraction
•  Introduction to Data Abstraction
•  Design Issues for Abstract Data Types
•  Language Examples
•  Parameterized Abstract Data Types
•  Encapsulation Constructs
•  Naming Encapsulations

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

The Concept of Abstraction

• An abstraction is a view or representation
of an entity that includes only the most
significant attributes

•  The concept of abstraction is fundamental
in programming (and computer science)

• Nearly all programming languages support
process abstraction with subprograms

• Nearly all programming languages
designed since 1980 support data
abstraction

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Introduction to Data Abstraction

• An abstract data type is a user-defined
data type that satisfies the following two
conditions:
–  The representation of, and operations on,

objects of the type are defined in a single
syntactic unit

–  The representation of objects of the type is
hidden from the program units that use these
objects, so the only operations possible are
those provided in the type's definition

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Advantages of Data Abstraction

• Advantage of the first condition
–  Program organization, modifiability

(everything associated with a data structure is
together), and separate compilation

• Advantage the second condition
–  Reliability--by hiding the data

representations, user code cannot directly
access objects of the type or depend on the
representation, allowing the representation to
be changed without affecting user code

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Language Requirements for ADTs

• A syntactic unit in which to encapsulate the
type definition

• A method of making type names and
subprogram headers visible to clients, while
hiding actual definitions

•  Some primitive operations must be built
into the language processor

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Design Issues

• What is the form of the container for the
interface to the type?

• Can abstract types be parameterized?
• What access controls are provided?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Language Examples: Ada
•  The encapsulation construct is called a package

–  Specification package (the interface)
–  Body package (implementation of the entities named in

the specification)
•  Information Hiding

–  The spec package has two parts, public and private
–  The name of the abstract type appears in the public part of

the specification package. This part may also include
representations of unhidden types

–  The representation of the abstract type appears in a part of
the specification called the private part

•  More restricted form with limited private types 
Private types have built-in operations for assignment and
comparison

 Limited private types have NO built-in operations

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Language Examples: Ada (continued)

•  Reasons for the public/private spec
package:  

1. The compiler must be able to see the
representation after seeing only the spec
package (it cannot see the private part)  
2. Clients must see the type name, but not
the representation (they also cannot see the
private part)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Language Examples: Ada (continued)

• Having part of the implementation details
(the representation) in the spec package
and part (the method bodies) in the body
package is not good  

One solution: make all ADTs pointers 

Problems with this:  
1. Difficulties with pointers 
2. Object comparisons 
3. Control of object allocation is lost

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

An Example in Ada
package Stack_Pack is
 type stack_type is limited private;

 max_size: constant := 100;

 function empty(stk: in stack_type) return Boolean;

 procedure push(stk: in out stack_type; elem:in Integer);
 procedure pop(stk: in out stack_type);

 function top(stk: in stack_type) return Integer;

 private -- hidden from clients

 type list_type is array (1..max_size) of Integer;
 type stack_type is record

 list: list_type;

 topsub: Integer range 0..max_size) := 0;

 end record;
end Stack_Pack

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Language Examples: C++

•  Based on C struct type and Simula 67
classes

•  The class is the encapsulation device
• All of the class instances of a class share a

single copy of the member functions
•  Each instance of a class has its own copy of

the class data members
•  Instances can be static, stack dynamic, or

heap dynamic

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Language Examples: C++ (continued)

•  Information Hiding
–  Private clause for hidden entities
–  Public clause for interface entities
–  Protected clause for inheritance (Chapter 12)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Language Examples: C++ (continued)

• Constructors:
–  Functions to initialize the data members of

instances (they do not create the objects)
–  May also allocate storage if part of the object

is heap-dynamic
–  Can include parameters to provide

parameterization of the objects
–  Implicitly called when an instance is created
–  Can be explicitly called
–  Name is the same as the class name

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Language Examples: C++ (continued)

• Destructors
–  Functions to cleanup after an instance is

destroyed; usually just to reclaim heap storage
–  Implicitly called when the object’s lifetime ends
–  Can be explicitly called
–  Name is the class name, preceded by a tilde (~)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

An Example in C++
class Stack {

 private:
 int *stackPtr, maxLen, topPtr;
 public:

 Stack() { // a constructor
 stackPtr = new int [100];

 maxLen = 99;
 topPtr = -1;
 };

 ~Stack () {delete [] stackPtr;};
 void push (int num) {…};

 void pop () {…};
 int top () {…};
 int empty () {…};

}

A Stack class header file

// Stack.h - the header file for the Stack class

#include <iostream.h>

class Stack {
private: //** These members are visible only to other
//** members and friends (see Section 11.6.4)

 int *stackPtr;
 int maxLen;
 int topPtr;
public: //** These members are visible to clients
 Stack(); //** A constructor

 ~Stack(); //** A destructor

 void push(int);
 void pop();
 int top();
 int empty();
}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

The code file for Stack
// Stack.cpp - the implementation file for the Stack class

#include <iostream.h>

#include "Stack.h"

using std::cout;

Stack::Stack() { //** A constructor

 stackPtr = new int [100];
 maxLen = 99;

 topPtr = -1;

}

Stack::~Stack() {delete [] stackPtr;}; //** A destructor
void Stack::push(int number) {
 if (topPtr == maxLen)
 cerr << "Error in push--stack is full\n";

 else stackPtr[++topPtr] = number;
}

...

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Evaluation of ADTs in C++ and Ada

• C++ support for ADTs is similar to
expressive power of Ada

•  Both provide effective mechanisms for
encapsulation and information hiding

• Ada packages are more general
encapsulations; classes are types

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Language Examples: C++ (continued)

•  Friend functions or classes - to provide
access to private members to some
unrelated units or functions
–  Necessary in C++

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Language Examples: Java

•  Similar to C++, except:
–  All user-defined types are classes
–  All objects are allocated from the heap and

accessed through reference variables
–  Individual entities in classes have access

control modifiers (private or public), rather
than clauses

–  Java has a second scoping mechanism,
package scope, which can be used in place of
friends
• All entities in all classes in a package that do not

have access control modifiers are visible
throughout the package

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

An Example in Java
class StackClass {

 private:

 private int [] *stackRef;

 private int [] maxLen, topIndex;

 public StackClass() { // a constructor

 stackRef = new int [100];

 maxLen = 99;

 topPtr = -1;

 };

 public void push (int num) {…};

 public void pop () {…};

 public int top () {…};

 public boolean empty () {…};

}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Language Examples: C#
•  Based on C++ and Java
• Adds two access modifiers, internal and

protected internal
• All class instances are heap dynamic
• Default constructors are available for all

classes
• Garbage collection is used for most heap

objects, so destructors are rarely used
•  structs are lightweight classes that do

not support inheritance

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Language Examples: C# (continued)
• Common solution to need for access to

data members: accessor methods (getter
and setter)

• C# provides properties as a way of
implementing getters and setters without
requiring explicit method calls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

C# Property Example
public class Weather {
 public int DegreeDays { //** DegreeDays is a property
 get {return degreeDays;}
 set {

 if(value < 0 || value > 30)
 Console.WriteLine(
 "Value is out of range: {0}", value);
 else degreeDays = value;}
 }
 private int degreeDays;
 ...
 }

...
Weather w = new Weather();
int degreeDaysToday, oldDegreeDays;
...
w.DegreeDays = degreeDaysToday;
...
oldDegreeDays = w.DegreeDays;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Abstract Data Types in Ruby
•  Encapsulation construct is the class
•  Local variables have “normal” names
•  Instance variable names begin with “at” signs (@)
•  Class variable names begin with two “at” signs (@@)
•  Instance methods have the syntax of Ruby

functions (def … end)
•  Constructors are named initialize (only one per

class)—implicitly called when new is called
–  If more constructors are needed, they must have different

names and they must explicitly call new
•  Class members can be marked private or public,

with public being the default
•  Classes are dynamic

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Abstract Data Types in Ruby (continued)

class StackClass {

 def initialize
 @stackRef = Array.new
 @maxLen = 100

 @topIndex = -1
 end

 def push(number) … end
 def pop … end

 def top … end
 def empty … end

end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Parameterized Abstract Data Types 

•  Parameterized ADTs allow designing an
ADT that can store any type elements
(among other things) – only an issue for
static typed languages

• Also known as generic classes
• C++, Ada, Java 5.0, and C# 2005 provide

support for parameterized ADTs

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Parameterized ADTs in Ada
•  Ada Generic Packages

–  Make the stack type more flexible by making the element type and the
size of the stack generic

generic
Max_Size: Positive;
type Elem_Type is private;
package Generic_Stack is
Type Stack_Type is limited private;
function Top(Stk: in out StackType) return Elem_type;
…
end Generic_Stack;

Package Integer_Stack is new Generic_Stack(100,Integer);
Package Float_Stack is new Generic_Stack(100,Float);

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Parameterized ADTs in C++
• Classes can be somewhat generic by

writing parameterized constructor
functions
 class Stack {
 …

 Stack (int size) {
 stk_ptr = new int [size];
 max_len = size - 1;
 top = -1;
 };
 …

 }

 Stack stk(100);

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Parameterized ADTs in C++ (continued)

•  The stack element type can be parameterized by making the
class a templated class 
template <class Type>
class Stack {
 private:
 Type *stackPtr;
 const int maxLen;
 int topPtr;
 public:
 Stack() {
 stackPtr = new Type[100];
 maxLen = 99;
 topPtr = -1;
 }
 …
}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Parameterized Classes in Java 5.0

• Generic parameters must be classes
• Most common generic types are the

collection types, such as LinkedList and
ArrayList

•  Eliminate the need to cast objects that are
removed

•  Eliminate the problem of having multiple
types in a structure

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Parameterized Classes in C# 2005

•  Similar to those of Java 5.0
•  Elements of parameterized structures can

be accessed through indexing

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Encapsulation Constructs

•  Large programs have two special needs:
–  Some means of organization, other than simply

division into subprograms
–  Some means of partial compilation (compilation

units that are smaller than the whole program)
• Obvious solution: a grouping of

subprograms that are logically related into
a unit that can be separately compiled
(compilation units)

•  Such collections are called encapsulation

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Nested Subprograms

•  Organizing programs by nesting
subprogram definitions inside the logically
larger subprograms that use them

•  Nested subprograms are supported in
Ada, Fortran 95, Python, and Ruby

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Encapsulation in C

•  Files containing one or more subprograms
can be independently compiled

•  The interface is placed in a header file
•  Problem: the linker does not check types

between a header and associated
implementation

•  #include preprocessor specification – used
to include header files in applications

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Encapsulation in C++

• Can define header and code files, similar to
those of C

• Or, classes can be used for encapsulation
–  The class is used as the interface (prototypes)
–  The member definitions are defined in a

separate file
•  Friends provide a way to grant access to

private members of a class

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Ada Packages

•  Ada specification packages can include
any number of data and subprogram
declarations

•  Ada packages can be compiled separately
•  A package’s specification and body parts

can be compiled separately

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

C# Assemblies 

• A collection of files that appear to be a
single dynamic link library or executable

•  Each file contains a module that can be
separately compiled

• A DLL is a collection of classes and
methods that are individually linked to an
executing program

• C# has an access modifier called internal;
an internal member of a class is visible to
all classes in the assembly in which it
appears

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

Naming Encapsulations

•  Large programs define many global names;
need a way to divide into logical groupings

• A naming encapsulation is used to create a
new scope for names

• C++ Namespaces
–  Can place each library in its own namespace and

qualify names used outside with the namespace
–  C# also includes namespaces

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

Naming Encapsulations (continued)

•  Java Packages
–  Packages can contain more than one class

definition; classes in a package are partial
friends

–  Clients of a package can use fully qualified
name or use the import declaration

• Ada Packages
–  Packages are defined in hierarchies which

correspond to file hierarchies
–  Visibility from a program unit is gained with the
with clause

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

Naming Encapsulations (continued)

•  Ruby classes are name encapsulations, but Ruby
also has modules

•  Typically encapsulate collections of constants and
methods

•  Modules cannot be instantiated or subclassed, and
they cannot define variables

•  Methods defined in a module must include the
module’s name

•  Access to the contents of a module is requested
with the require method  
-

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

Summary

•  The concept of ADTs and their use in program
design was a milestone in the development of
languages

•  Two primary features of ADTs are the packaging of
data with their associated operations and
information hiding

•  Ada provides packages that simulate ADTs
•  C++ data abstraction is provided by classes
•  Java’s data abstraction is similar to C++
•  Ada, C++, Java 5.0, and C# 2005 support

parameterized ADTs
•  C++, C#, Java, Ada, and Ruby provide naming

encapsulations

