
ISBN 0-321-49362-1	

Chapter 5

Names, Bindings,
and Scopes

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 5 Topics

•  Introduction
•  Names
•  Variables
•  The Concept of Binding
•  Scope
•  Scope and Lifetime
•  Referencing Environments
•  Named Constants

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Introduction

•  Imperative languages are abstractions of
von Neumann architecture
–  Memory
–  Processor

• Variables characterized by attributes
–  To design a type, must consider scope, lifetime,

type checking, initialization, and type
compatibility

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Names

• Design issues for names:
–  Are names case sensitive?
–  Are special words reserved words or keywords?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Names (continued)

•  Length
–  If too short, they cannot be connotative
–  Language examples:

• FORTRAN 95: maximum of 31
• C99: no limit but only the first 63 are significant;

also, external names are limited to a maximum of
31

• C#, Ada, and Java: no limit, and all are significant
• C++: no limit, but implementers often impose one

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Names (continued)

•  Special characters
–  PHP: all variable names must begin with dollar

signs
–  Perl: all variable names begin with special

characters, which specify the variable’s type
–  Ruby: variable names that begin with @ are

instance variables; those that begin with @@ are
class variables

Names (continued)

• Case sensitivity
–  Disadvantage: readability (names that look alike

are different)
• Names in the C-based languages are case sensitive
• Names in others are not
• Worse in C++, Java, and C# because predefined

names are mixed case (e.g.
IndexOutOfBoundsException)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Names (continued)

•  Special words
–  An aid to readability; used to delimit or separate

statement clauses
• A keyword is a word that is special only in certain

contexts, e.g., in Fortran
–  Real VarName (Real is a data type followed with a name,

therefore Real is a keyword)
–  Real = 3.4 (Real is a variable)

–  A reserved word is a special word that cannot
be used as a user-defined name

–  Potential problem with reserved words: If there
are too many, many collisions occur (e.g.,
COBOL has 300 reserved words!)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Variables

• A variable is an abstraction of a memory
cell

• Variables can be characterized as a
sextuple of attributes:
–  Name
–  Address
–  Value
–  Type
–  Lifetime
–  Scope

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Variables Attributes

•  Name - not all variables have them
•  Address - the memory address with which it is

associated
–  A variable may have different addresses at different times

during execution
–  A variable may have different addresses at different places

in a program
–  If two variable names can be used to access the same

memory location, they are called aliases
–  Aliases are created via pointers, reference variables, C and

C++ unions
–  Aliases are harmful to readability (program

readers must remember all of them)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Variables Attributes (continued)

•  Type - determines the range of values of variables
and the set of operations that are defined for
values of that type; in the case of floating point,
type also determines the precision

•  Value - the contents of the location with which the
variable is associated

 - The l-value of a variable is its address
 - The r-value of a variable is its value
•  Abstract memory cell - the physical cell or

collection of cells associated with a variable

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

The Concept of Binding

 A binding is an association, such as
between an attribute and an entity, or
between an operation and a symbol

•  Binding time is the time at which a binding
takes place.

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Possible Binding Times

•  Language design time -- bind operator
symbols to operations

•  Language implementation time-- bind
floating point type to a representation

• Compile time -- bind a variable to a type
in C or Java

•  Load time -- bind a C or C++ static
variable to a memory cell)

•  Runtime -- bind a nonstatic local variable
to a memory cell

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Static and Dynamic Binding

• A binding is static if it first occurs before
run time and remains unchanged
throughout program execution.

• A binding is dynamic if it first occurs during
execution or can change during execution
of the program

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Type Binding

• How is a type specified?
• When does the binding take place?
•  If static, the type may be specified by either

an explicit or an implicit declaration

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Explicit/Implicit Declaration

• An explicit declaration is a program
statement used for declaring the types of
variables

• An implicit declaration is a default
mechanism for specifying types of variables
(the first appearance of the variable in the
program)

•  FORTRAN, BASIC, and Perl provide implicit
declarations (Fortran has both explicit and
implicit)
–  Advantage: writability
–  Disadvantage: reliability (less trouble with Perl)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Dynamic Type Binding

• Dynamic Type Binding (JavaScript and PHP)
•  Specified through an assignment statement

e.g., JavaScript
 list = [2, 4.33, 6, 8];
 list = 17.3;

–  Advantage: flexibility (generic program units)
–  Disadvantages:

• High cost (dynamic type checking and
interpretation)

• Type error detection by the compiler is difficult

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Variable Attributes (continued)

•  Type Inferencing (ML, Miranda, and Haskell)
–  Rather than by assignment statement, types are

determined (by the compiler) from the context
of the reference

•  Storage Bindings & Lifetime
–  Allocation - getting a cell from some pool of

available cells
–  Deallocation - putting a cell back into the pool

•  The lifetime of a variable is the time during
which it is bound to a particular memory
cell

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Categories of Variables by Lifetimes

•  Static--bound to memory cells before
execution begins and remains bound to the
same memory cell throughout execution,
e.g., C and C++ static variables
–  Advantages: efficiency (direct addressing),

history-sensitive subprogram support
–  Disadvantage: lack of flexibility (no recursion)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Categories of Variables by Lifetimes
•  Stack-dynamic--Storage bindings are created for

variables when their declaration statements are
elaborated.

 (A declaration is elaborated when the executable
code associated with it is executed)

•  If scalar, all attributes except address are statically
bound
–  local variables in C subprograms and Java methods

•  Advantage: allows recursion; conserves storage
•  Disadvantages:

–  Overhead of allocation and deallocation
–  Subprograms cannot be history sensitive
–  Inefficient references (indirect addressing)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Categories of Variables by Lifetimes
•  Explicit heap-dynamic -- Allocated and

deallocated by explicit directives, specified by the
programmer, which take effect during execution

•  Referenced only through pointers or references,
e.g. dynamic objects in C++ (via new and delete),
all objects in Java

•  Advantage: provides for dynamic storage
management

•  Disadvantage: inefficient and unreliable

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Categories of Variables by Lifetimes

•  Implicit heap-dynamic--Allocation and
deallocation caused by assignment
statements
–  all variables in APL; all strings and arrays in Perl,

JavaScript, and PHP
• Advantage: flexibility (generic code)
• Disadvantages:

–  Inefficient, because all attributes are dynamic
–  Loss of error detection

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Variable Attributes: Scope

•  The scope of a variable is the range of
statements over which it is visible

•  The nonlocal variables of a program unit
are those that are visible but not declared
there

•  The scope rules of a language determine
how references to names are associated
with variables

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Static Scope  

•  Based on program text
•  To connect a name reference to a variable, you (or

the compiler) must find the declaration
•  Search process: search declarations, first locally,

then in increasingly larger enclosing scopes, until
one is found for the given name

•  Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent

•  Some languages allow nested subprogram
definitions, which create nested static scopes (e.g.,
Ada, JavaScript, Fortran 2003, and PHP)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Scope (continued)

• Variables can be hidden from a unit by
having a "closer" variable with the same
name

• Ada allows access to these "hidden"
variables
–  E.g., unit.name

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Blocks  

–  A method of creating static scopes inside program
units--from ALGOL 60

–  Example in C:
 void sub() {

 int count;

 while (...) {

 int count;

 count++;
 ...
 }
 …
 }

 - Note: legal in C and C++, but not in Java
 and C# - too error-prone

Declaration Order

• C99, C++, Java, and C# allow variable
declarations to appear anywhere a
statement can appear
–  In C99, C++, and Java, the scope of all local

variables is from the declaration to the end of
the block

–  In C#, the scope of any variable declared in a
block is the whole block, regardless of the
position of the declaration in the block
• However, a variable still must be declared before it

can be used

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Declaration Order (continued)

•  In C++, Java, and C#, variables can be
declared in for statements
–  The scope of such variables is restricted to the
for construct

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Global Scope

• C, C++, PHP, and Python support a
program structure that consists of a
sequence of function definitions in a file
–  These languages allow variable declarations to

appear outside function definitions

• C and C++have both declarations (just
attributes) and definitions (attributes and
storage)
–  A declaration outside a function definition

specifies that it is defined in another file
Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Global Scope (continued)

•  PHP
–  Programs are embedded in XHTML markup

documents, in any number of fragments, some
statements and some function definitions

–  The scope of a variable (implicitly) declared in a
function is local to the function

–  The scope of a variable implicitly declared
outside functions is from the declaration to the
end of the program, but skips over any
intervening functions
• Global variables can be accessed in a function

through the $GLOBALS array or by declaring it global
Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Global Scope (continued)

•  Python
–  A global variable can be referenced in functions,

but can be assigned in a function only if it has
been declared to be global in the function

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Evaluation of Static Scoping 

• Works well in many situations
•  Problems:

–  In most cases, too much access is possible
–  As a program evolves, the initial structure is

destroyed and local variables often become
global; subprograms also gravitate toward
become global, rather than nested

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Dynamic Scope  

•  Based on calling sequences of program
units, not their textual layout (temporal
versus spatial)

•  References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced
execution to this point

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Scope Example
Big!
 - declaration of X!
 Sub1!
 - declaration of X -!
 ...!
 call Sub2!
 ...!

 Sub2!
 ...!
 - reference to X -!
 ... !

 ...!
 call Sub1!
 …

Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Scope Example

•  Static scoping
–  Reference to X is to Big's X

• Dynamic scoping
–  Reference to X is to Sub1's X

•  Evaluation of Dynamic Scoping:
–  Advantage: convenience
–  Disadvantages:

1.  While a subprogram is executing, its variables are
visible to all subprograms it calls

2.  Impossible to statically type check
3. Poor readability- it is not possible to statically
 determine the type of a variable

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Scope and Lifetime

•  Scope and lifetime are sometimes closely
related, but are different concepts

• Consider a static variable in a C or C++
function

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Referencing Environments

•  The referencing environment of a statement is the
collection of all names that are visible in the
statement

•  In a static-scoped language, it is the local variables
plus all of the visible variables in all of the
enclosing scopes

•  A subprogram is active if its execution has begun
but has not yet terminated

•  In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Named Constants

•  A named constant is a variable that is bound to a
value only when it is bound to storage

•  Advantages: readability and modifiability
•  Used to parameterize programs
•  The binding of values to named constants can be

either static (called manifest constants) or dynamic
•  Languages:

–  FORTRAN 95: constant-valued expressions
–  Ada, C++, and Java: expressions of any kind
–  C# has two kinds, readonly and const
 - the values of const named constants are bound at
 compile time
 - The values of readonly named constants are
 dynamically bound

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

Summary

•  Case sensitivity and the relationship of names to
special words represent design issues of names

•  Variables are characterized by the sextuples:
name, address, value, type, lifetime, scope

•  Binding is the association of attributes with
program entities

•  Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap
dynamic

•  Strong typing means detecting all type errors

