
ISBN 0-321-49362-1

Chapter 4

Lexical and Syntax
Analysis

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 4 Topics

•  Introduction
•  Lexical Analysis
•  The Parsing Problem
•  Recursive-Descent Parsing
•  Bottom-Up Parsing

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction

•  Language implementation systems must
analyze source code, regardless of the
specific implementation approach

• Nearly all syntax analysis is based on a
formal description of the syntax of the
source language (BNF)

Copyright © 2015 Pearson. All rights reserved. 1-4

Syntax Analysis

•  The syntax analysis portion of a language
processor nearly always consists of two
parts:
–  A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a
regular grammar)

–  A high-level part called a syntax analyzer, or
parser (mathematically, a push-down automaton
based on a context-free grammar, or BNF)

Copyright © 2015 Pearson. All rights reserved. 1-5

Advantages of Using BNF to Describe
Syntax

•  Provides a clear and concise syntax
description

•  The parser can be based directly on the BNF
•  Parsers based on BNF are easy to maintain

Copyright © 2015 Pearson. All rights reserved. 1-6

Reasons to Separate Lexical and Syntax
Analysis

•  Simplicity - less complex approaches can
be used for lexical analysis; separating
them simplifies the parser

•  Efficiency - separation allows optimization
of the lexical analyzer

•  Portability - parts of the lexical analyzer
may not be portable, but the parser always
is portable

Copyright © 2015 Pearson. All rights reserved. 1-7

Lexical Analysis

• A lexical analyzer is a pattern matcher for
character strings

• A lexical analyzer is a “front-end” for the
parser

•  Identifies substrings of the source program
that belong together - lexemes
–  Lexemes match a character pattern, which is

associated with a lexical category called a token
–  sum is a lexeme; its token may be IDENT

Copyright © 2015 Pearson. All rights reserved. 1-8

Lexical Analysis (continued)

•  The lexical analyzer is usually a function that is
called by the parser when it needs the next token

•  Three approaches to building a lexical analyzer:
–  Write a formal description of the tokens and use a

software tool that constructs a table-driven lexical
analyzer from such a description

–  Design a state diagram that describes the tokens and
write a program that implements the state diagram

–  Design a state diagram that describes the tokens and
hand-construct a table-driven implementation of the
state diagram

Copyright © 2015 Pearson. All rights reserved. 1-9

State Diagram Design

–  A naïve state diagram would have a transition
from every state on every character in the
source language - such a diagram would be very
large!

Copyright © 2015 Pearson. All rights reserved. 1-10

Lexical Analysis (continued)

•  In many cases, transitions can be combined
to simplify the state diagram
–  When recognizing an identifier, all uppercase

and lowercase letters are equivalent
• Use a character class that includes all letters

–  When recognizing an integer literal, all digits are
equivalent - use a digit class

Copyright © 2015 Pearson. All rights reserved. 1-11

Lexical Analysis (continued)

•  Reserved words and identifiers can be
recognized together (rather than having a
part of the diagram for each reserved word)
–  Use a table lookup to determine whether a

possible identifier is in fact a reserved word

Copyright © 2015 Pearson. All rights reserved. 1-12

Lexical Analysis (continued)

• Convenient utility subprograms:
–  getChar - gets the next character of input, puts

it in nextChar, determines its class and puts the
class in charClass

–  addChar - puts the character from nextChar
into the place the lexeme is being accumulated,
lexeme

–  lookup - determines whether the string in
lexeme is a reserved word (returns a code)

Copyright © 2015 Pearson. All rights reserved. 1-13

State Diagram

Copyright © 2015 Pearson. All rights reserved. 1-14

Lexical Analyzer

Implementation:
 ! SHOW front.c (pp. 172-177)

 - Following is the output of the lexical analyzer of
 front.c when used on (sum + 47) / total

Next token is: 25 Next lexeme is (
Next token is: 11 Next lexeme is sum

Next token is: 21 Next lexeme is +
Next token is: 10 Next lexeme is 47
Next token is: 26 Next lexeme is)
Next token is: 24 Next lexeme is /

Next token is: 11 Next lexeme is total
Next token is: -1 Next lexeme is EOF

Copyright © 2015 Pearson. All rights reserved. 1-15

The Parsing Problem

• Goals of the parser, given an input
program:
–  Find all syntax errors; for each, produce an

appropriate diagnostic message and recover
quickly

–  Produce the parse tree, or at least a trace of the
parse tree, for the program

Copyright © 2015 Pearson. All rights reserved. 1-16

The Parsing Problem (continued)

•  Two categories of parsers
–  Top down - produce the parse tree, beginning

at the root
• Order is that of a leftmost derivation
• Traces or builds the parse tree in preorder

–  Bottom up - produce the parse tree, beginning
at the leaves
• Order is that of the reverse of a rightmost derivation

• Useful parsers look only one token ahead in
the input

Copyright © 2015 Pearson. All rights reserved. 1-17

The Parsing Problem (continued)

•  Top-down Parsers
–  Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next
sentential form in the leftmost derivation, using
only the first token produced by A

•  The most common top-down parsing
algorithms:
–  Recursive descent - a coded implementation
–  LL parsers - table driven implementation

Copyright © 2015 Pearson. All rights reserved. 1-18

The Parsing Problem (continued)

•  Bottom-up parsers
–  Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule
in the grammar that must be reduced to
produce the previous sentential form in the
right derivation

–  The most common bottom-up parsing
algorithms are in the LR family

Copyright © 2015 Pearson. All rights reserved. 1-19

The Parsing Problem (continued)

•  The Complexity of Parsing
–  Parsers that work for any unambiguous

grammar are complex and inefficient (O(n3),
where n is the length of the input)

–  Compilers use parsers that only work for a
subset of all unambiguous grammars, but do it
in linear time (O(n), where n is the length of the
input)

Copyright © 2015 Pearson. All rights reserved. 1-20

Recursive-Descent Parsing

•  There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated by
that nonterminal

•  EBNF is ideally suited for being the basis for
a recursive-descent parser, because EBNF
minimizes the number of nonterminals

Copyright © 2015 Pearson. All rights reserved. 1-21

Recursive-Descent Parsing (continued)

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | int_constant | (<expr>)

Copyright © 2015 Pearson. All rights reserved. 1-22

Recursive-Descent Parsing (continued)

• Assume we have a lexical analyzer named
lex, which puts the next token code in
nextToken

•  The coding process when there is only one
RHS:
–  For each terminal symbol in the RHS, compare it

with the next input token; if they match,
continue, else there is an error

–  For each nonterminal symbol in the RHS, call its
associated parsing subprogram

Copyright © 2015 Pearson. All rights reserved. 1-23

Recursive-Descent Parsing (continued)

/* Function expr
 Parses strings in the language
 generated by the rule:
 <expr> → <term> {(+ | -) <term>}
 */

void expr() {

/* Parse the first term */

 term();
/* As long as the next token is + or -, call
 lex to get the next token and parse the
 next term */

 while (nextToken == ADD_OP ||
 nextToken == SUB_OP){
 lex();
 term();
 }
}

Copyright © 2015 Pearson. All rights reserved. 1-24

Recursive-Descent Parsing (continued)

•  This particular routine does not detect errors
•  Convention: Every parsing routine leaves the next

token in nextToken

Copyright © 2015 Pearson. All rights reserved. 1-25

Recursive-Descent Parsing (continued)

• A nonterminal that has more than one RHS
requires an initial process to determine
which RHS it is to parse
–  The correct RHS is chosen on the basis of the

next token of input (the lookahead)
–  The next token is compared with the first token

that can be generated by each RHS until a match
is found

–  If no match is found, it is a syntax error

Recursive-Descent Parsing (continued)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/
void term() {

/* Parse the first factor */
 factor();

/* As long as the next token is * or /,
 next token and parse the next factor */
 while (nextToken == MULT_OP || nextToken == DIV_OP) {

 lex();
 factor();
 }
} /* End of function term */

Copyright © 2015 Pearson. All rights reserved. 1-26

Copyright © 2015 Pearson. All rights reserved. 1-27

Recursive-Descent Parsing (continued)

/* Function factor
 Parses strings in the language
 generated by the rule:
 <factor> -> id | (<expr>) */

 void factor() {

 /* Determine which RHS */
 if (nextToken) == ID_CODE || nextToken == INT_CODE)

 /* For the RHS id, just call lex */
 lex();

/* If the RHS is (<expr>) – call lex to pass over the left parenthesis,
 call expr, and check for the right parenthesis */
 else if (nextToken == LP_CODE) {
 lex();
 expr();
 if (nextToken == RP_CODE)
 lex();
 else
 error();
 } /* End of else if (nextToken == ... */

 else error(); /* Neither RHS matches */
}

Copyright © 2015 Pearson. All rights reserved. 1-28

Recursive-Descent Parsing (continued)

 - Trace of the lexical and syntax analyzers on (sum + 47) / total

Next token is: 25 Next lexeme is (Next token is: 11 Next lexeme is total
Enter <expr> Enter <factor>
Enter <term> Next token is: -1 Next lexeme is EOF

Enter <factor> Exit <factor>
Next token is: 11 Next lexeme is sum Exit <term>
Enter <expr> Exit <expr>

Enter <term>
Enter <factor>
Next token is: 21 Next lexeme is +
Exit <factor>

Exit <term>
Next token is: 10 Next lexeme is 47
Enter <term>

Enter <factor>
Next token is: 26 Next lexeme is)
Exit <factor>
Exit <term>

Exit <expr>
Next token is: 24 Next lexeme is /
Exit <factor>

Copyright © 2015 Pearson. All rights reserved. 1-29

Recursive-Descent Parsing (continued)

•  The LL Grammar Class
–  The Left Recursion Problem

•  If a grammar has left recursion, either direct or
indirect, it cannot be the basis for a top-down
parser
–  A grammar can be modified to remove direct left

recursion as follows:
For each nonterminal, A,
1.  Group the A-rules as A → Aα1 | … | Aαm | β1 | β2 | … |
βn

 where none of the β‘s begins with A
2. Replace the original A-rules with
 A → β1A’ | β2A’ | … | βnA’
 A’ → α1A’ | α2A’ | … | αmA’ | ε

Copyright © 2015 Pearson. All rights reserved. 1-30

Recursive-Descent Parsing (continued)

•  The other characteristic of grammars that
disallows top-down parsing is the lack of
pairwise disjointness
–  The inability to determine the correct RHS on

the basis of one token of lookahead
–  Def: FIRST(α) = {a | α =>* aβ }

 (If α =>* ε, ε is in FIRST(α))

Copyright © 2015 Pearson. All rights reserved. 1-31

Recursive-Descent Parsing (continued)

•  Pairwise Disjointness Test:
–  For each nonterminal, A, in the grammar that

has more than one RHS, for each pair of rules, A
→ αi and A → αj, it must be true that

 FIRST(αi) ⋂ FIRST(αj) = φ
•  Example:
 A → a | bB | cAb
 A → a | aB

Copyright © 2015 Pearson. All rights reserved. 1-32

Recursive-Descent Parsing (continued)

•  Left factoring can resolve the problem
 Replace

 <variable> → identifier | identifier [<expression>]
 with
 <variable> → identifier <new>
 <new> → ε | [<expression>]
 or
 <variable> → identifier [[<expression>]]
 (the outer brackets are metasymbols of EBNF)

Copyright © 2015 Pearson. All rights reserved. 1-33

Bottom-up Parsing

•  The parsing problem is finding the correct
RHS in a right-sentential form to reduce to
get the previous right-sentential form in
the derivation

Copyright © 2015 Pearson. All rights reserved. 1-34

Bottom-up Parsing (continued)

• Intuition about handles:
–  Def: β is the handle of the right sentential form

 γ = αβw if and only if S =>*rm αAw =>rm αβw

–  Def: β is a phrase of the right sentential form
 γ if and only if S =>* γ = α1Aα2 =>+ α1βα2

–  Def: β is a simple phrase of the right sentential
form γ if and only if S =>* γ = α1Aα2 => α1βα2

Copyright © 2015 Pearson. All rights reserved. 1-35

Bottom-up Parsing (continued)

•  Intuition about handles (continued):
–  The handle of a right sentential form is its

leftmost simple phrase
–  Given a parse tree, it is now easy to find the

handle
–  Parsing can be thought of as handle pruning

Copyright © 2015 Pearson. All rights reserved. 1-36

Bottom-up Parsing (continued)

•  Shift-Reduce Algorithms
–  Reduce is the action of replacing the handle on

the top of the parse stack with its corresponding
LHS

–  Shift is the action of moving the next token to
the top of the parse stack

Copyright © 2015 Pearson. All rights reserved. 1-37

Bottom-up Parsing (continued)

• Advantages of LR parsers:
–  They will work for nearly all grammars that

describe programming languages.
–  They work on a larger class of grammars than

other bottom-up algorithms, but are as efficient
as any other bottom-up parser.

–  They can detect syntax errors as soon as it is
possible.

–  The LR class of grammars is a superset of the
class parsable by LL parsers.

Copyright © 2015 Pearson. All rights reserved. 1-38

Bottom-up Parsing (continued)

•  LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could

use the entire history of the parse, up to
the current point, to make parsing
decisions
–  There are only a finite and relatively small

number of different parse situations that could
have occurred, so the history could be stored in
a parser state, on the parse stack

Copyright © 2015 Pearson. All rights reserved. 1-39

Bottom-up Parsing (continued)

• An LR configuration stores the state of an
LR parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

Copyright © 2015 Pearson. All rights reserved. 1-40

Bottom-up Parsing (continued)

•  LR parsers are table driven, where the
table has two components, an ACTION
table and a GOTO table
–  The ACTION table specifies the action of the

parser, given the parser state and the next
token
• Rows are state names; columns are terminals

–  The GOTO table specifies which state to put
on top of the parse stack after a reduction
action is done
• Rows are state names; columns are nonterminals

Copyright © 2015 Pearson. All rights reserved. 1-41

Structure of An LR Parser

Copyright © 2015 Pearson. All rights reserved. 1-42

Bottom-up Parsing (continued)
•  Initial configuration: (S0, a1…an$)
•  Parser actions:

–  For a Shift, the next symbol of input is pushed
onto the stack, along with the state symbol that
is part of the Shift specification in the Action
table

–  For a Reduce, remove the handle from the stack,
along with its state symbols. Push the LHS of the
rule. Push the state symbol from the GOTO
table, using the state symbol just below the new
LHS in the stack and the LHS of the new rule as
the row and column into the GOTO table

Copyright © 2015 Pearson. All rights reserved. 1-43

Bottom-up Parsing (continued)

•  Parser actions (continued):
–  For an Accept, the parse is complete and no

errors were found.
–  For an Error, the parser calls an error-handling

routine.

Copyright © 2015 Pearson. All rights reserved. 1-44

LR Parsing Table

Copyright © 2015 Pearson. All rights reserved. 1-45

Bottom-up Parsing (continued)

• A parser table can be generated from a
given grammar with a tool, e.g., yacc or
bison

Copyright © 2015 Pearson. All rights reserved. 1-46

Summary

•  Syntax analysis is a common part of language
implementation

•  A lexical analyzer is a pattern matcher that isolates
small-scale parts of a program
–  Detects syntax errors
–  Produces a parse tree

•  A recursive-descent parser is an LL parser
–  EBNF

•  Parsing problem for bottom-up parsers: find the
substring of current sentential form

•  The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

