
UMBC CMSC 331 Java

UMBC CMSC 331 Java 2

Comments are almost like C++

The javadoc program generates HTML API documentation
from the “javadoc” style comments in your code.

/* This kind of comment can span multiple lines */
// This kind is to the end of the line
/**  
 * This kind of comment is a special  
 * ‘javadoc’ style comment  
 */

UMBC CMSC 331 Java 3

An example of a class

class Person {  
 String name;  
 int age;

 void birthday () {  
 age++;  
 System.out.println (name +  
 ' is now ' + age);  
 }  
}

Variable

Method

UMBC CMSC 331 Java 4

Scoping
•  As in C/C++, scope is determined by the placement of curly braces {}.
•  A variable defined within a scope is available only to the end of that

scope.

{ int x = 12;

 /* only x available */

 { int q = 96;

 /* both x and q available */

 }

 /* only x available */

 /* q “out of scope” */

 }

{ int x = 12;

 { int x = 96; /* illegal */

 }

 }

This is ok in C/C++ but not in Java.

UMBC CMSC 331 Java 5

An array is an object

• Person mary = new Person ();
• int myArray[] = new int[5];
• int myArray[] = {1, 4, 9, 16, 25};
• String languages [] = {"Prolog",
"Java"};

•  Since arrays are objects they are allocated dynamically
•  Arrays, like all objects, are subject to garbage collection

when no more references remain
–  so fewer memory leaks
–  Java doesn’t have pointers!

UMBC CMSC 331 Java 6

Scope of Objects

•  Java objects don’t have the same lifetimes as
primitives.

• When you create a Java object using new, it hangs
around past the end of the scope.

• Here, the scope of name s is delimited by the {}s
but the String object hangs around until GC’d
{
 String s = new String("a string");
} /* end of scope */

UMBC CMSC 331 Java 7

Methods, arguments and return values

•  Java methods are like C/C++ functions. General case:
returnType methodName (arg1, arg2, … argN) {
 methodBody
}

The return keyword exits a method optionally with a value
int storage(String s) {return s.length() * 2;}
boolean flag() { return true; }
float naturalLogBase() { return 2.718f; }
void nothing() { return; }
void nothing2() {}

UMBC CMSC 331 Java 8

The static keyword
•  Java methods and variables can be declared static
• These exist independent of any object
• This means that a Class’s

– static methods can be called even if no objects of that
class have been created and

– static data is “shared” by all instances (i.e., one rvalue
per class instead of one per instance

class StaticTest {static int i = 47;}
StaticTest st1 = new StaticTest();
StaticTest st2 = new StaticTest();
// st1.i == st2.I == 47
StaticTest.i++; // or st1.I++ or st2.I++
// st1.i == st2.I == 48

UMBC CMSC 331 Java 9

Array Operations

• Subscripts always start at 0 as in C
• Subscript checking is done automatically
• Certain operations are defined on arrays of objects,

as for other classes
– e.g. myArray.length == 5

UMBC CMSC 331 Java

Echo.java
C:\UMBC\331\java>type echo.java
// This is the Echo example from the Sun tutorial
class echo {
 public static void main(String args[]) {
 for (int i=0; i < args.length; i++) {
 System.out.println(args[i]);
 }
 }
}

C:\UMBC\331\java>javac echo.java

C:\UMBC\331\java>java echo this is pretty silly
this
is
pretty
silly

C:\UMBC\331\java>

UMBC CMSC 331 Java 12

Factorial Example
/**

 * This program computes the factorial of a number

 */

public class Factorial { // Define a class

 public static void main(String[] args) { // The program starts here

 int input = Integer.parseInt(args[0]); // Get the user's input

 double result = factorial(input); // Compute the factorial

 System.out.println(result); // Print out the result

 } // The main() method ends here

 public static double factorial(int x) { // This method computes x!

 if (x < 0) // Check for bad input

 return 0.0; // if bad, return 0

 double fact = 1.0; // Begin with an initial value

 while(x > 1) { // Loop until x equals 1

 fact = fact * x; // multiply by x each time

 x = x - 1; // and then decrement x

 } // Jump back to the star of loop

 return fact; // Return the result

 } // factorial() ends here

} // The class ends here

From Java in a Nutshell

UMBC CMSC 331 Java 13

JAVA Classes
•  The class is the fundamental concept in JAVA (and other

OOPLs)
•  A class describes some data object(s), and the operations (or

methods) that can be applied to those objects
•  Every object and method in Java belongs to a class
•  Classes have data (fields) and code (methods) and classes

(member classes or inner classes)
•  Static methods and fields belong to the class itself
•  Others belong to instances

UMBC CMSC 331 Java 14

Example
public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two methods which operate on the instance fields of an object
 public double area() { // Compute the area of the
circle

 return PI * r * r;
 }
 public double circumference() { // Compute the circumference of
the circle

 return 2 * PI * r;
 }
}

UMBC CMSC 331 Java 15

Constructors

•  Classes should define one or more methods to create or
construct instances of the class

•  Their name is the same as the class name
–  note deviation from convention that methods begin with lower case

•  Constructors are differentiated by the number and types of
their arguments
–  An example of overloading

•  If you don’t define a constructor, a default one will be
created.

•  Constructors automatically invoke the zero argument
constructor of their superclass when they begin (note that
this yields a recursive process!)

UMBC CMSC 331 Java 16

Constructor example
public class Circle {

 public static final double PI = 3.14159; // A constant

 public double r; // instance field holds circle’s radius

 // The constructor method: initialize the radius field

 public Circle(double r) { this.r = r; }

 // Constructor to use if no arguments

 public Circle() { r = 1.0; }

 // better: public Circle() { this(1.0); }

 // The instance methods: compute values based on radius

 public double circumference() { return 2 * PI * r; }

 public double area() { return PI * r*r; }

}

this.r refers to the r
field of the class

This() refers to a
constructor for the class

UMBC CMSC 331 Java 17

Extending a class
•  Class hierarchies reflect subclass-superclass relations among

classes.
•  One arranges classes in hierarchies:

–  A class inherits instance variables and instance methods from all of its
superclasses. Tree -> BinaryTree -> BST

–  You can specify only ONE superclass for any class.
•  When a subclass-superclass chain contains multiple instance

methods with the same signature (name, arity, and argument
types), the one closest to the target instance in the subclass-
superclass chain is the one executed.
–  All others are shadowed/overridden.

•  Something like multiple inheritance can be done via interfaces
(more on this later)

•  What’s the superclass of a class defined without an extends
clause?

UMBC CMSC 331 Java 18

Extending a class
public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 public double cx, cy;

 // A new constructor method to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

UMBC CMSC 331 Java 19

Overloading, overwriting, and shadowing

•  Overloading occurs when Java can distinguish two procedures with the
same name by examining the number or types of their parameters.

•  Shadowing or overriding occurs when two procedures with the same
signature (name, the same number of parameters, and the same
parameter types) are defined in different classes, one of which is a
superclass of the other.

UMBC CMSC 331 Java 20

On designing class hierarchies
•  Programs should obey the explicit-representation principle, with classes

included to reflect natural categories.
•  Programs should obey the no-duplication principle, with instance methods

situated among class definitions to facilitate sharing.
•  Programs should obey the look-it-up principle, with class definitions

including instance variables for stable, frequently requested information.
•  Programs should obey the need-to-know principle, with public interfaces

designed to restrict instance-variable and instance-method access, thus
facilitating the improvement and maintenance of nonpublic program
elements.

•  If you find yourself using the phrase an X is a Y when describing the
relation between two classes, then the X class is a subclass of the Y class.

•  If you find yourself using X has a Y when describing the relation between
two classes, then instances of the Y class appear as parts of instances of the
X class.

UMBC CMSC 331 Java 21

Data hiding and encapsulation
• Data-hiding or encapsulation is an important part

of the OO paradigm.
• Classes should carefully control access to their data

and methods in order to
– Hide the irrelevant implementation-level details so they

can be easily changed
– Protect the class against accidental or malicious damage.
– Keep the externally visible class simple and easy to

document
•  Java has a simple access control mechanism to help

with encapsulation
– Modifiers: public, protected, private, and package

(default)

UMBC CMSC 331 Java 22

Example
encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public

 public static final double PI = 3.14159;

 protected double r; // Radius is hidden, but visible to subclasses

 // A method to enforce the restriction on the radius

 // This is an implementation detail that may be of interest to subclasses

 protected checkRadius(double radius) {

 if (radius < 0.0)

 throw new IllegalArgumentException("radius may not be negative.");

 }

 // The constructor method

 public Circle(double r) {checkRadius(r); this.r = r; }

 // Public data accessor methods

 public double getRadius() { return r; };

 public void setRadius(double r) { checkRadius(r); this.r = r;}

 // Methods to operate on the instance field

 public double area() { return PI * r * r; }

 public double circumference() { return 2 * PI * r; }

}

UMBC CMSC 331 Java 23

Access control
• Access to packages

–  Java offers no control mechanisms for packages.
–  If you can find and read the package you can access it

• Access to classes
– All top level classes in package P are accessible

anywhere in P
– All public top-level classes in P are accessible anywhere

• Access to class members (in class C in package P)
– Public: accessible anywhere C is accessible
– Protected: accessible in P and to any of C’s subclasses
– Private: only accessible within class C
– Package: only accessible in P (the default)

UMBC CMSC 331 Java 24

UMBC CMSC 331 Java 25

Getters and setters
•  A getter is a method that extracts information from an instance.

–  One benefit: you can include additional computation in a getter.
•  A setter is a method that inserts information into an instance (also

known as mutators).
–  A setter method can check the validity of the new value (e.g., between 1 and

7) or trigger a side effect (e.g., update a display)
•  Getters and setters can be used even without underlying matching

variables
•  Considered good OO practice
•  Essential to javabeans
•  Convention: for variable fooBar of type fbtype, define

–  getFooBar()
–  setFooBar(fbtype x)

UMBC CMSC 331 Java 26

Example
getters and setters

package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden, but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");
 }

 // The constructor method
 public Circle(double r) { checkRadius(r); this.r = r;}

 // Public data accessor methods
 public double getRadius() { return r; };
 public void setRadius(double r) { checkRadius(r); this.r = r;}

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

UMBC CMSC 331 Java 27

Abstract classes and methods

• Abstract vs. concrete classes
• Abstract classes can not be instantiated

public abstract class shape { }
• An abstract method is a method w/o a body

public abstract double area();
•  (Only) Abstract classes can have abstract methods
•  In fact, any class with an abstract method is

automatically an abstract class

UMBC CMSC 331 Java 28

Example
abstract class

public abstract class Shape {

 public abstract double area(); // Abstract methods: note

 public abstract double circumference();// semicolon instead of body.

}

class Circle extends Shape {

 public static final double PI = 3.14159265358979323846;

 protected double r; // Instance data

 public Circle(double r) { this.r = r; } // Constructor

 public double getRadius() { return r; } // Accessor

 public double area() { return PI*r*r; } // Implementations of

 public double circumference() { return 2*PI*r; } // abstract methods.

}

class Rectangle extends Shape {

 protected double w, h; // Instance data

 public Rectangle(double w, double h) { // Constructor

 this.w = w; this.h = h;

 }

 public double getWidth() { return w; } // Accessor method

 public double getHeight() { return h; } // Another accessor

 public double area() { return w*h; } // Implementations of

 public double circumference() { return 2*(w + h); } // abstract methods.

}

UMBC CMSC 331 Java 29

Syntax Notes

• No global variables
– class variables and methods may be applied to any

instance of an object
– methods may have local (private?) variables

• No pointers
– but complex data objects are “referenced”

• Other parts of Java are borrowed from PL/I,
Modula, and other languages

