
What is Object-Oriented
Programming 9

Bjmne StMStNp, AT&T Bell Laboratories

Ohjedenkntedhas
become a buzzword
that implies “good”

proghmming But
when it comes to

really supporting this
pardighm, not all

l a m e e s are equal.

10

ot all programminglanguagescan
be object-oriented. Yet, claims
have been made that APL, Ada,

Clu, C++, Iaops, and Smalltalk are object-
oriented languages. I have heard discus-
sions of object-oriented design in C, Pas-
cal, Modula-2, and Chili. Could there
somewhere be proponents of object-
oriented programming in Fortran and
Cobol? I think there must be.

“Object-oriented” has become a high-
tech synonym for “good.” Articles in the
trade presscontain arguments that appear
to boil down to syllogisms like:

Ada is good; object-oriented is good;
thert$oore, Ada is object+niated.

This article presents my view ofwhat o b
ject-oriented means in the context of a
general-purpose programming language.
I present examples in C++, partly to in t re

An earlier version of this article appeared in / k r . Fmt
Etrmpnii G 7 $ on O ~ P r l - (~ i ~ / k ~ ~ r n t n r , l R . Spnnger-
Verlag. NewYork. 1987.p~. 51-70.

0740-7459/88/05OO/OO10/$01 .OO 01988 IEEE

duce C++ and partly because C++ is one of
the few languages that supports data a h
straction, object-oriented programming,
and traditional programming techniques.
I do not cover issues of concurrency and
hardware support for specific, higher level
language constructs.

Programming paradigms
Object-oriented programming is a tech-

nique - a paradigm for writing “good”
programs for a set of problems. If the term
“object-oriented language” means any-
thing, it must mean a language that has
mechanisms that support the object-
oriented style of programming well.

There is an important distinction here:
A language suppurtsa programming style if
i t provides facilities that make it con-
venient (reasonably easy, safe, and efi-
cient) to use that style. A language does
not support a technique if i t takes excep
tional effort or skill to write such pro-
grams; in that case, the language merely

IEEE Software

wrcilhc prograinmcrs to use the techniqiie.
For examplc,you can wire structured pro-
grains in Fortr;in and type-sccurc pro-
grams i n C, and y o ~ i can use data ahstrac-
tioii in Moclul>tZ, but i t is iinnecessarily
hard to do so because those languages do
not .support those techniques.

Support for a p i d i g i n conics not o n l y
in the obvious f o i - i n of language facilities
that let you use the paradigm directly, bur
also in the niorc subtle forms of compilc-
tiin<= ai id runtime checks foi- uniiiten-
tional deviations f'rom the paradigm. Type
checking, ambiguity detection, and run-
time checks are an examples of linguistic
support for paradigms. Extralinguistic
facilities such as standard librarics and
pi-ograinrning einironments can a l s o prw
\idr significant support for paradigms.

One language is not nccessarily better
than another because i t has a feature the
other does not - therc are many ex-
amples to the contrary. The impormiit
issue is not how many features a language
has, but that the features it docs have are
sufficient t o support the desired program-
ming styles in the desired application
areas. Specifically, it is important that:

All features are cleanly and elegantly
integrated into the language.

I t is possible to cornhilie features to
achieve solutions that would have other-
wise required extra, separate features.

There arc as few spurious arid special-
pirposc features as possible.

Implementing a feature does not im-
pose significant overhead on programs
that do not require it.

A user need o n l y know about the lan-
guage subset used explicitly to write a pro-
gram.

The last two principles can be suni-
marized as "what you don't know won't
hurt you." If. there are any doubts about
the usefulness o f a feature, i t is better left
out. It is much easier to add a feature to a
language than to remove or modifv one

digin is filled with discussions of how to

A languee does not
s u m t a fechique if
it takes exceptional

e m r t or skill to write
such proglams.

pass arguments, how to distinguish differ-
ent kinds ofargumcnts and different kinds
of functions (procedures, routines, mac-
ros, etc.), and so on.

Fortran is the original procedut al lan-
guage; Algold0, Algol-68, C, and Pascal are
later inventions in the same tradition.

An example of good procedural style is a
square-root function. Given an argument,
the function neatly produces a result. To
do so, i t performs a well-understood math-
ematical computation.

double sqrt(doublc arg)
I

I

void some-function ()
I

/ / the rode for calcdating a squarv 1-oot

double root2 = sqrt (2) ;
/ / ...

I

that has found itsway into the compiler or '
the literature.

Procedul-al programming uses frrnc- , tions tv ci-catc oi-dcr in a maze of a l p
rithms.

Procedural. The original - arid pi-ob 1
ably still the most cvnirnoii - program-
rning paradigm is:

Data hiding. Over the years, the empha- , sis in the progi-am design has shifted from
procedure design t o data organization.

~ Among ot~ici- things, this reflects an in- Dmdr rohirh prowilurrs you want: I L W lhr
I m t iilgonlhms y m cnn,/ind.

crc'ae in prograni size. '4 set ofrelated p r e
The foC1l.S is on proccdnrc design -the ~ cedures and the data they manipulate is

often called ii ~notlule. The programming
pal-adigni is:

algorichtn needed to pelform the desired
computation. Iaiguages support this par-
adigm with facilities for passing arguments
to fnnctions and retLlrning values 1 functions. The literature about this para-

Zlrridr ~ i ~ h i ~ h moduIr.rycnL w(m~;pn?lzlion
theprop-(on ,si) thnt dntn is hiddm in
m o d u h .

This paradigm is known as the data-hid-
ing principle. U%en procedures do not
need to be grouped with related data, the
procedural style suffices. I n fact, the tech-
niques for designing good procedures are
still applied, now to each procedure in a
module.

The most coninion example ofdata hid-
ing is a definition of :I stack module. A
good solution requires

a user interface for the stack (for ex-
ample, thefLinctionspustl() and pop()),

that the stack representation (for ex-
ample, a vector of elements) can be
accessed only through this user interface,
and

that the stack is initialized before its
first use.

A plausibly external interface for astack
module is

,(I declai-ation of tlic inteifare of module
/ / stackol characters
chai-pop():
void push (char) :
const sr-nck-cife = 100;

Assuming this interface is found in a file
called stark.h, the intemalscan bedefined
like this:

#include "5utk.h"
static charv[stack-siie]: / / " s t a t i c " means

// local to this
/ / file/rnodule

May 1988 11

static char* p = v;

char pop()
I

I
void push (char c)
I

I

It is quite feasible to change this stack
representation to a linked list. The user
does not have access to the representation
anyway (because v and p were declared
static - that is, local to the file or module
in which theyweredeclared). Such astack
can be used like this:

#include "stack.h"
void some-function()
I

// the stack is initially
// empty

// check for underflow and pop

// check for overflow and push

chart= pop(push('c'));
if (c != 'c') error("impossib1e");

I

As originally defined, Pascal doesn't pro-
vide satisfactory facilities for such group
ing: The only way to hide a name from the
rest of the program is to make it local to a
procedure. This leads to strange proce-
dure nestings and overreliance on global
data.
Cfaressomewhatbetter.Asshown in the

example, you can define a module by
grouping related function and data defini-
tions in a single source file. The program-
mer can then control which names are
seen by the rest of the program (a name
can be seen by the rest of the program un-
lessit has been declared static). So in C you
can achieve a degree of modularity.
However, there is no generally accepted
paradigm for using thisfacility, and relying
on staticdeclarations is rather low-level.

One of Pascal's successors, Modula-2,
goesa bit further. It formalizes the module
concept by making it a fundamental con-
struct with welldefined module declara-
tions, explicit control of the scope of
names (import/export facilities), a mod-
ule-initialization mechanism, and a set of
generally known, accepted usage styles.

In other words, C enables the decom-
position of a program into modules, while
Modula-2 supports it.

Data abstraction. Programming with
modules leads to the centralization of all
data of a certain type under the control of

a type-manager module. Ifyouwanted two
stacks, you would define a stack-manager
module with an interface like this:

// stack-id is a type; no details about
// stacks or stackjds are known here:

// make a stack and return its identifier:

// call when stack is no longer needed:

class stack-id;

stack-id create-stack(int size);

destroy-stack(stack-id);
void push(stack-id, char);
char pop(stack-id);

This is certainly a great improvement
over the traditional unstructured mess,
but "types" implemented this way are
clearly very different from the types built
into a language.

I n most important aspects, a type
created through a module mechanism is
different from a built-in type and enjoys in-
ferior support: Each type-manager mod-
ule must define a separate mechanism for
creatingvariables of its type, there is n o e s
tablished norm forassigningobject identi-
fiers, a variable of such a type has no name
known to the compiler or programming
environment, and such variables do not
obey the usual scope and argument-pass
ing rules.

For example:

void f()
I

stack-idsl;
stack-id s2;

S I = create-stack(200);
// Oops: forgot to create s2

char c 1 = pop (s 1 ,push (s 1 ,'a')) ;
if (cl != 'c') error("impossib1e");

char c2 = pop(s2,push(s2,'a'));
if (c2 != 'c') error("impossih1e");

destroy(s2);
// Oops: forgot to destroy S I

I

In other words, the module concept that
supports the data-hiding paradigm ena-
blesdataabstraction, but doesnot support
it.

Abstract data types. Languages such as
Ada, Clu, and C++ attack this problem by
letting the user define types that behave in
(nearly) the same way as built-in types.
Such a type is often called an abstract data
type, although I prefer to call it a userde-

fined type.* The programming paradigm
becomes:

Decide which types you want; plovide afull
set ofoperationsfor each type.

When there isnoneedformore thatone
object of a type, the data-hiding program-
ming style using modules suffices. Arith-
metic types such as rational and complex
numbers are common examples of user-
defined types:

class complex 1

public:
double re, im;

complex(doub1e r, double i) { re=r; im=i; 1
// float->complex conversion:
complex(doub1e r) { re=r; im=O; 1
friend complex operator+

// binary minus:
friend complex operator-

/ / unary minus:
friend complex operator-(complex) ;
friend complex operatort

friend complex operator/

// ...

(complex, complex);

(complex, complex);

(complex, complex);

(complex, complex);

I

The declaration of the complex class
(the userdefined type) specifies the repre-
sentation ofacomplexnumberand theset
of operations on a complex number. The
representation is @'vu& that is, re and im
are accessible only to the functions
specified in the declaration of class com-
plex. Such functions can be defined like
this:

complex operatoi-+

I
(complex a l , complex a2)

return complex
(a1 .reta2.re,al .inita2.im);

t

and used like this:

complex a = 2.3;
complex h = I /a;
complex c = a+b*complex(1,2.3);
// ...
c = -(a/h)t2;

Most, but not all, modules are better ex-

*As Doug Mcllroy has raid, 'Those typrs are not 'ab
stract,' the) arc a real as rnrand/7mf."Another defini-
lion ofabsuact data types would requirr a mathrmatical
"abstract" sprcification of all ppes (both builr-in and
iiserdcfinrd). What is referred to as typc's in this ai-tick
would. given such a specification. hr coticrete specifica-
tions of such triilv abstrncr rntities.

12 IEEE Software

pressed as userdefined types. When the
programmer prefers to use a module r e p
resentation, even when a proper Facility
for defining types is available, he can de-
clare a type that has only a single object of
that t)pe. Alternatively, a language might
pi-ovidc a module concept in addition to
and distinct from the class concept.

~rohIP7m ti userdefined type defines a
sort of black box. Once i t has been de-
f i n d , it does not really interact with the
rest ofthe program. The onlywav to adapt
it to new uses is to modify its definition.
This is often too inflexible.

Consider defining a type shapfOr use in
agraphics system. Asume for the moment
that the system has to support circles, trian-
gles, and squares. Assunie also that you
have some classes:

class point! / * ... * / 1;
class colol-j /* ... * / 1;

You might define a shape like this:

eniiin kind ! circle, triangle, square 1;

class shapc !
point tenter;
color- col:
kind k;
// representation ofshape

point where() 1-rtiirii trnter;
Loid movr(poiiit to) ! trtitri- = to; draw();

void draw () ;
1 oid rotate(int) :
/ / inorr operations

public:

t

I:

The t)pr field. k , is used by operations
such a5 draw() and rotate() to determine
what shapr they are dealing with (in a Pas-
cal-like language, you might use a variant
record with tag k) . The function draw()
might be defined like this:

wid shapc,::drau ()
!

switch (k) j
c-ax (ii-clc:
/ / draw ii cirrlc.
break;

/ / draw a trianglr
bsrak;

// drawa sqiia~-e

case triangle:

caw sqiiarc:

I
1

This is a mess. I t requires that functions

such as draw() know about all the kinds o f
shapes there are. Therefore, the code for
any such function must by modified each
time a new shape is added to the system.

If you define a new shape, every opera-
tion on a shape must be examined and
(possibly) modified. You cannot add a new
shape to a system unlessyou have access t o

the source code for every operation. Be-
cause adding a new shape involves touch-
ing the code of every important operation
on shapes, i t can require great skill and
may introduce bugs into the code that
handles the older shapes.

Also, your choice of how you represent
particular shapes can be severely cramped
by the requirement that at least some of
their representation fit into the typically
fixed-sized framework presented by the
definition ofthe general type shape

The problem is that there is no distinc-
tion between the general properties ofany
shape (ashape hasacolor,itcan bedrawn,
etc.) and the propertiesof a specific shape
(a circle is a shape that has a radius, is
drawn by a circle-drawiiig function, etc.).

Object-oriented programming. T h e
ability to express this distinction and take
advantage of it defines object-oriented
programming. A language with constructs
that let you express and use this distinction
supports object-oriented pi-ogramming.
Other languages don’t.

The Simula inheritance mechanism
provides asolution. First, you specify a class
that defines the general properties of all
shapes:

c l a s shape !
point center;
color col;
/ / ...

public:
point where() j setui-ii center; }
void movr(point to) { trnte1- = to; draw():

vii-tualvoid d raw() ;
vii-tual void Iot;itc(int);
/ / ...

I

1;

The functions marked klirtual are those
for which the calling interface can be de-
fined, but the implementation cannot be
defined except for a specific shape. (‘Vir-
tual” is the Simula and [:++ term for “may
be redefined later in a class derived from
this one.”) Given this definition, we can

write gencral functions t o manipulate
shapes:

wid rotatc-all

/ / rotiitr all nicmlwrs of \ectoI “ v ” o l aiie
// “sire” “mglr” dcgrrrs
I

(shape* v, i i i t siic. i i i t mgle)

foi- (int i = 0: i < sile; i++)
v[i].rotatr(;ingle);

To define a particular shape, you must
say that i t is a shape and spccify its particu-
lar properties:

clas5 cii-cle : public sh‘tpr {

public:
int radius:

voiddraw() ! / * ... */ I ;

t ;
InC++,the circleclassissaid tobc dm’wd

from the shape class, and the shapc class is
said t o be a hatrofthe circle class. Anothel-
terminolop calls circle a subclass and
shape a superclass.

The programming pai-adigin is:

1)mridr wliicli cimsrc you 71inni; /)ro71i& (1

pill srt (iJ oprm~ionsJm- rtzrh rhss; wu~kr
co~nrnoncilzty rxplitit using in1~m“lancP

Where tlierc is no such comrnoriality,
data abstraction suffices. I {ow much types
have in common s o that the conimonality
can be exploitcd using inhet-itance and \4r-
tual fhct ions is the liunus test ofthe appli-
cability ofot?jcct~)ricnted progi-animing,

In sonic areas, such as interactive graph-
ics, there is clearly enormous opportunity
for- object-orirntcd programming. In
other areas, such as classical arithmetic
types and the computations based on
them, there appears to be hardly any need
for more than data abstraction.*

Finding cornrnonalit)~ among types in a
system is not ii trivial proccss. How much
commonalit! can be exploited depends
on how the system is dcsigncti. (:on-
monality inlist be actively sought when the
system is drsignrd, borh by drsigning
classes specifically as building blocks for
other typesatid bycxaminingclassrstosee
if they have similarities that can be ex-
ploited in a common base class.

~ ~-
*Howr\cl. morr .id\anrcd m.ilhriiiatic \ i i i in bcnrlit

May 1988 13

Nygaard' and Kerr' explain what object-
oriented programming is without re-
course to specific language constructs;
Cargill has written a case study in object-
oriented pr0gramming.l

Supporting data
abstraction

Programming with data abstraction is
supported with facilities both to define a
set of operations for a type and to restrict
access of objects of that type to that opera-
tion set. However, once that is done the
programmer soon finds that language re-
finements are needed to define and use
the new types conveniently.

lnitializationandcleanup. When a type's
representation is hidden, some mecha-
nism must be provided for a user to initial-
ize variables of that type. A simple solution
is to require a user to call some function to
initialize avariable before using it. For ex-
ample,

class vector {
in t sz;
int* v;

public:
void init(int size); //call init to initialize

// szandv before the
// first use of avector

// ...
I ;
vector v;
// don't use v here
v.init(IO);
// use v here

This iserror-prone and inelegant. Abetter
solution is to allow the designer of a type to
provide a distinguished function to do the
initialization. Such a function makes all*
cation and initialization of a variable a
single operation (often called instantia-
tion) insteadoftwooperations. Suchan in-
stantiation function is often called a con-
structor.

In caseswhere constructingobject types
isnontrivial,itisoften necessarytoprovide
a complementary operation to clean up
objects after their last use. In C++, a
cleanup function is called a destructor.
Consider a vectortype:

class vector {
int sz; / /number ofelements
int* v;

vector(int); // constructor

// pointer to integers
public:

-vector(); // destructor
int& operator[] (int index); // subscript

// operator
t ;

The vectorconstructor can be defined to al-
locate space like this:

vec tor::vector (in t s)
I

if (s<=O) error("badvector size");
sz = s;
v = newint[s]; // allocatean array

// of "s" integers
t

The vectordestructor frees storage:

vector::-vector()
1

delete v; // deallocate the memory
// pointed to by v

I

C++ does not support garbage collection.
It compensates for this by letting a type
maintain its own storage management
without user intervention. While this is a
common use for the constructor/destruc-
tor mechanism, many uses of this mecha-
nism are unrelated to storage manage-
ment.

Assignment and initialization. Control-
ling the construction and destruction of
objects is sufficient for many types, but not
for all. Sometimes, it is also necessary to
control copy operations. Consider the vec-
tor class:

vectorvl(100);
vector v2 = v l ; // make a new vector v2

V I =v2; //assignv2tovl
// initialized to V I

It must be possible to define the meaning
of the initialization of v2 and its assign-
ment to V I . It should also be possible to
prohibit such copy operations; preferably
both alternatives should be available. For
example:

int* v;
int SL;

public:
/ / ...
void operator=(vector&); // assignment
vector(vector&); // initialization

class vector 1

I ;

specifies that user-defined operations
should be used to interpret vector assign-

ment andinitialization. Assignment might
be defined like this:

vector::operator= (vector& a)

I
// check size and copy elements

if (sz != a.s/;)
error("badvector s i x for =");
for (inti = 0; i<sr; i t +) v[i] = a.v[i];

I

Since the assignment operation relies on
the old value of the vector being assigned
to, the initialization operation must be
different. For example:

vector::vector(vector& a)

{
/ / initialize avector from another vector

SL = a s / ; / / same size
v=newint[sz]; // allocateelementarray
/ / copy elements:
for (inti=Oi<sz;i t+) v[i] =a.v[il;

I

In C++, a constructor X(X&) defines all in-
itialization of objects of type Xwith
another object of type X. In addition to ex-
plicit initialization, constructors of the
form X(X&)are used to handlearguments
passed by value and function-return
values.

In C++, assignment of an object of class
X can be prohibited by declaring the as-
signment operation private:

class x [
void operator=(>(&); / / only members

X(X&); / / copy an X
/ / of x can

. . .
public:

I ;
. . .

Add does not support constructors, de-
structors, assignment overloading, or
userdefined control of argument passing
and function return. This lack of support
severely limits the class of types that can be
defined and forces the programmer back
to data-hiding techniques: The user must
design and use type-manager modules in-
stead of proper types.

Parameterized types. Why would you
want todefine avectorofintegersanyway?
Typically, a user needsavector ofelements
of some type unknown to the writer of the
type urctor. Consequendy the vector type
ought to be expressed so it takes the ele-
ment type as an argument:

14 IEEE Software

c l a s vcctor<class 'I> {

T* v;
int sr;

public:
vcrtor(int s j
{

/ / vrrtoi- of elements of type 1

if (s <= 0) error("hadvector sire");
v = newT[sr=s]: //allocateanarray

I
T&operator[] (inti) ;
int sire() { retur-n s/; 1
// ...

1;

Vectors of specific types can now be de-
fined and used:

vrctor-<iiiovl(100); / / V I isavector

vrctor<complex>v2(200); / / v2is avector
// of 100 integei-s

/ / of 200 complex
/ /numbers

v2[i] =complex(vl[xl,vl [)I):

Ada and Clu support parameterized types.
Unfortunately, C++ does not; the notation
used here is still experimental. When they
are needed, parameterized classes are
faked with macros. There need not be any
runtime overheads compared with a class
where all types involved are specified
directly.

Typically, a parameterired type will have
to depend on at least some aspect of a type
parameter. For example, some of the vec-
tor operations must assume that assign-
ment is defined for objects of the parame-
ter type. How can you ensure that? One
way is to require that the designer of the
parameterized class state the dependency.
For example, "T must be a type for which =
is defined." A better way is not to require
this - or to take a specification of an argu-
ment type as a partial specification. Acom-
pilercan detectifaamissingoperation has
been applied and give an error message
such as

cannot define
vrcto~-<non~cop~->::operator[] (non-copy&):

vpe non-copy does not have operator=

This technique letsyoudefine typeswhere
the dependency on attributes ofaparame-
ter type is handled at the level of the in-
dividual operation of the type. For ex-
ample, you might define a vector with a
sort operation. The sort operation might
use <, ==, and = on objects of the parame-
ter bpe. Itwould still be possible to define

vectors of a type for which < was not de-
fined, as long as the vector-sorting opera-
tion was not actually invoked.

A problem with parameterized types is
that each instantiationcreatesan indepen-
dent type. For example, the type upr-
tor<char> is unrelated to the type uer-
tor<romplex>. Ideally you would like to be
able to express and use the commonality
of types generated from the same paranie-
terized type. For example, both uer-
tor<char, and vector<cornplex> have a size()
function that is independent of the pa-
rameter type. It is possible, but not easy, to
deduce this from the definition of class
vector and then let size() be applied to any
vector. An interpreted language or a lan-
guage that supports both parameterized
types and inheritance has an advantage
here.

Exception handling. As programs grow,
and especially when libraries are used ex-
tensively, standardsfor handling errors (or
"exceptional circumstances") become ini-
portant.

Ada, Algol48, and Clu each support a
standard way to handle exceptions. Unfor-
tunately, C++ does not. When necessary,
exceptions are faked using pointers to
functions, exception objects, error states,
and the C library's signal and longjmp
facilities. This is not satisfactory because it
fails to provide even a standard framework
for error handling.

Consider the vector example again.
What should be done when an out-of-
rangeindexvalueispassed to thesubscript
operator? The designer of the vector class
should be able to provide a default be-
havior for this:

class vector

except vector-range {
/ / define an exception called
/ / vector-range a i d specifv default
// code for handling it
error("g1obal: vector range error");
exit (99) ;

I
I

Instead of calling an error function, uer-
tor::operatm[]() can invoke the exception-
handling code:

int&vector::operator[] (inti)
l

it (04 I 1 s/<=i) iaiw \ccroI-ratigc;
w t i i i n i v [i] :

I

This will cause thr call stack t o be 1111-

raveled until an cxception hmdlcr for UP<-

tor-rctng-pis found and executed.
An exccption handlet- rnay he definrd

for a specific block:

void E(j {
veCtOl-v(I O) ;

ci-rors hei-c ;ire tiandlrtl
by the local cxceprioii
handler tielined l x i o w

/ / ...

v[i] = 7;
I
rxccpc 1

/ / potential range CI.I.OI

\'er toir:vcc to i--n tigr :
eri-or("f () : vector miigc VI-I-01"):

rerwn:
I

/ / cIIoI\ l1eI-e ii1-t' ll;llldlcd b y the
// globnl exception h;uidlci
/ / defined in vec.toi-

i n t i = g() ;

v[i] = 7:

/ / g niiglir c;trisc a rangr
/ / error rising sonic vector
/ / potenrial range vi-roi-

I

There are many ways to define exceptions
arid the behaiior of exception handlers.
The facilit) sketched here resembles the
ones found in Modula-2+. This style of.ex-
ception handling can be iinplrrnented so
that code is not executed unless iin excep
tion is raised (except possibly for some in-
itialiration code). I t can also be ported
across most <; iiriplernentations by using
setjmp() and longjmp() (sec the <;library
manual for your system).

Could exceptions, as defined above, be
completely faked in a language such as
C++? Unfortunately, no. The snag is that
when an exception occurs, the runtime
stack must be iinravclcd up to a point
where an exception handler is defined. To
do this properly in <:++ involves invoking
destructors defined in the scopes in-
volved. This is not done by a <; longjmp()
and cannot in general be done by the user.

Coercions. U ser-de f i t i e d coc rc io n s ,
such as the one from floating-point num-
bers to complex numbers implied by the
constructor comnjhx(doubk), have proven
unexpectedly useful in C++. Such coer-
cions can be applied explicitly or the prw

May 1988 15

grammer can rely on the compiler to add
them implicitly where necessary and un-
ambiguous:

complex a = complex(I) ;
complex h = I ;

a = btcomplex(2);
a = h+2; // implicit:

// implicit:
// 1 ->complex(I)

// 2-> complex(2)

Coercions were introduced into C++ be-
cause mixed-mode arithmetic is the norm
in languages for numerical work and be-
cause most userdefined types used for cal-
culation (of matrices, character strings,
and machine addresses) have natural
mappings to and from other types.

One use of coercions has proven espe-
cially useful in organizing programs:

complex a = 2;
complex h = a+2; // interpreted as

//operator+
// (a,complex(2))

b = 2ta; //interpreted as
//operator+
// (complex(2)d

Only one function is needed to interpret +
operations, and the two operands are
handled identically by the type system.
Furthermore, class complex is written
without any need to modify the concept of
integers to enable the smooth and natural
integration of the two concepts.

This is in contrast to a “pure” object-
oriented system, where the operations
would be interpreted like this:

a+2; // a.operatort(2)
2ta; // 2.operator+(a)

making it necessary to modify the integer
class to make Z+alegal.

You should avoid modifying existing
code as much as possible when adding new
facilities to a system. Typically, object-
oriented programming offers superior
facilities for adding to a system without
modifying existing code. In this case, how-
ever, data-abstraction facilities provide a
better solution.

Iterators. A language that supports data
abstraction must provide a way to define
control structure^.^ In particular, users
need amechanism to define loopsover the
elements contained in an object of some
userdefined type, without forcing them to
depend on implementation details of the

user-defined type. Given a sufficiently
powerful mechanism for defining new
types and the ability to overload operators,
this can be handled without a separate
mechanism for defining control struc-
tures.

For a vector, defining an iterator is not
necessary because an ordering is available
to a user through the indices. I’ll define
one anyway, to demonstrate the tech-
nique.

There are several iterator styles. My
favorite relies on overloading the function
application operator ():*

class vector-iterator [
vector& v;
inti;

public:
vector-iterator(vector& r) { i = 0; v = r;)
intoperator() ()

{ return i<v.size() ?v.elem(itt) : 0;)
t :

A vector-iterator type can now be declared
and used for a vector:

vector v(sz):
vec tor-iterator next (v) ;
inti;
while (i=next()) print(i);

More than one iterator can be active for a
single object at one time, and a type may
have several different iterator types de-
fined for it so different kinds of iteration
can be performed. An iterator is a rather
simple control structure. More general
mechanisms can also be defined. For ex-
ample, the C++ standard library provides a
coroutine c l a s s

For many container types, such as vector,
you can avoid introducing a separate iter-
ator type by defining an iteration mecha-
nism as part of the type itself. A vectortype
might be defined to have a “current ele-
ment”:

class vector {
int* v;
int sz;
intcurrent;

public:
// ...
int next()
{return (currentt+<sz) ?v[current] : 0; I
intprev()
{ return (&--current) ?v[current] : 0 I

1;

*This style also relies on the existence ofadistinct value
to represent end of iteration. Often, in particular for
Ctt pointer ws, Ocan be used.

Then the iteration can be performed like
this:

vector v(sz);
inti;
while (i=v.next()) print (i) ;

This solution is not as general as the itera-
tor solution, but it avoids overhead in the
important special case where only one
kind of iteration is needed and where only
one iteration at a time is needed for avec-
tor.

If necessary, you can apply a more
general solution in addition to this simple
one. The simple solution requires more
foresight from the designer of the con-
tainer class than does the iterator solution.
The iterator-type technique can also be
used to define iterators that can be bound
to several different container types, thus
providing a mechanism for iterating over
different container typeswith asingle iter-
ator type.

Implementation issues. Suppor t for
data abstraction is primarily provided in
the form of language features imple-
mented by a compiler. However, parame-
terized types are best implemented with
support from a linker with some knowl-
edge of the language semantics, and ex-
ception handling requires support from
the runtime environment. Both can be im-
plemented to meet the strictest criteria for
both compile-time speed and efficiency
without compromising generality or prcl
grammer convenience.

As the power to define types increases,
programs will depend increasingly on
types from libraries (and notjust those de-
scribed in the language manual). Thisnat-
urally puts a greater demand on facilities
toexpresswhatisinsertedinto orretrieved
from a library, for finding out what a li-
brarycontains, fordeterminingwhatparts
of a library are actually used by a program,
and so on.

For acompiled language, facilities to cal-
culate the minimal compilation necessary
afterachangeareimportant. It isessential
that the linker/loader can bring a prcl
gram into memory for execution without
also bringing in a lot of related but unused
code. In particular, a library/linker/load-
er system that includes the code for every
operation on a type in the executable prcl

16 IEEE Software

Supporting
dojectaiented
programming

The lmsic support functions a prograin-
met- needs t o Lvrite otijcct-oriciitc.tI pi-tr
grains arc a class iriechxiism ivi th iiilieri-
tancc and a inech;iiiisni that lets calls of
member fiinctions depend on the actual
object t)-pe (\\-lien the actual type is uri-
kno\\m a t coinpile time).

The design of the iiieinl,er-f~inctioii call-
ing rnechanism is critical. I n atltiitioii.
1'. . ' I ' ' 'IC I i t ics I hat siipport data-ahstrac tion
techniques a rc important liecause the ar-
giiiiieiits 101- (lata ahstraction and for its I-e-
finrincnts to use types elegantly a r e
equal1 y wlid \vh ere sup p()rt foi- o tije c t-
oriented progi-animiiig is available.

The sticccss of Imth techniques hinges
on thedesi~rioft~peaantion thrrasr,flex-
ibility, and efficiency o f such t\pcs. object-
oriented programming simply lets user-
defined t)'pes be far more flexible and
gcncral than the ones designed using only
data-abstraction techniques.

Calling mechanisms. The key laiiguage
facility to support object-oi-ienterl pro-
grarniiiing is the rnechanism by which a

member fiinction is invoked for an object.
Foi- example, gi\en pointer p , how is ii call
/e/(arg handled? There is a range o f
choices.

I n languages such as (:++ ;ind Simrila,
whcr-e static type checking is used cxtcii-
sivcly, the type system can select bet\veen
different c;illing mechanisms. I n (:++,
there are two alternatives:

1. Normal function (AI: The member
function t o call is determined at compile
time (through a lookup in the coinpilet-'s
symbol tables) and called with the stan-
dard functioncall niechanism, with a n ar-
gument added to identify the object for
which the function is called. M h n the

liinction semantics. This optitiii/;itioii is
equally valuable as a support f0r data a b
straction.

2. \'irtual fiinction call: The fiuiction
called depends on the object t)pe, ivhich
usually cannot be determined until i- i i i i-

time. Typically, the pointer p will he of
some base class Band the object \\ill be an
object of some derived class I) . The call
mechanism must look into the object and
find some infijrmatioti placed there by the
compiler to determine which function /is
to he called. Once i l i a function, say 11::L is
found, i t is called i t h the mechaniwi tle-
sciitied above. At cornpile time, the name
/is converted into an index t o a table con-
taining pointers to fiinctions. This \ii-tiial-
call mechanism can essentially be rnatle a s

efficient as the normal fiinction<.all incch-
anisrn. I n the s tandard (;++ irnple-
men tat ion, o n l y five additional 111em~)ry
references are used. In cases where the ac-
tual type can be deduced at compile time,
even this overhead iseliminated and in-lin-
ing can be used. Such cases are quite com-
mon arid important.

In languagesmith w w k stxic type c h c ~ k -
ing, a third, more elaborate alternative
must be used. In ;I languagr like Smalltalk,
a list of the names of;111 ineiiibei. fiiiictions
(callrd methods) of a class are stor-rrl so
the! can be found at runtime:

3. Method invocation: The appropriate
table o f method iiarnes is first foiind bp ex-
amining the object that ppoints to. 1 1 1 this
table (or set oftables), the stringjis looked
up to see i f theo t~ jcc thasan~) . I fan / () is
found, it is called; othenvise, some error
handling takes place. This lookup differs
from the lookup done a t compile tinir in a
statically checked language because the
method invocation uses a method table for
the actual object.

A method invocation is inefficient com-
pared with a virtual function call, but i t is
more flexible. Since static type checking of
arguments qpically cannot be done for a
method invocation, the use of rnerhods
must be supported by dynamic type check-
ing.

standard function call is not efficient
enough, the programmer can declare a
fiinction to be in-line and the cornpilrr-bill
try to expand its body in-line. This lets y o u
achieve the efliciency of ;I macro expaii-

Type checking. The shape example car-
lier showed the power oftirtiial functioiis.
What else does a mcthod-invoc;irion
mechanism do for you? I t lets you invoke), = cs.,,(,,,(1:

sion without compromising the standard any method for any object. p->t;ll\eoff (i:

May 1988 17

The use of static type checkingand virtual
function calls leads to a somewhat differ-
ent style of programming than does dy-
namic type checking and method invoca-
tion. For example, a Simula or C++ class
specifies a fixed interface to a set of objects
(of any derived class), while a Smalltalk
class specifies an initial set of operations
for objects (of any subclass). In other
words, a Smalltalk class is a minimal speci-
fication and the user is free to try opera-
tions not specified, while a C++ class is an
exact specification and only operations
specified in the class declaration are
guaranteed to be accepted by the com-
piler.

Inheritance. Consider a language that
has some form of method lookup without
an inheritance mechanism. Does that lan-
guage support object-oriented program-
ming? I think not.

Clearly, you could do interesting things
with the method table to adapt the objects’
behavior to suit conditions. However, to
avoid chaos there must be some systematic
way to associate methods and the data
structures they assume for their object r e p
resentation. To let a object’s user know
what kind of behavior to expect, there
would also have to be some standardway to
express what is common to the different
behaviors the object might adopt. Thissys-
tematic, standard way is an inheritance
mechanism.

Consider a language that has an inheri-
tance mechanism without virtual func-
tions or methods. Does that language s u p
port object-oriented programming? I
think not: The shape example does not
have agood solution in such a language.

However, such a language would be
more powerful than a plain data-abstrac-
tion language. This contention is sup-
ported by the observation that many
Simula and C++ programs are structured
using class hierarchies without virtual
functions. The ability to express com-
monality (factoring) is an extremely
powerful tool. For example, the problems
associated with the need to have a com-
mon representation of all shapes could be
solved; no union would be needed.

However, in the absence of virtual func-
tions, the programmer would have to re-

sort to using type fields to determine ac-
tual types of objects, so the problems with
the code’s lack of modularity would re-
main.*

This implies that class derivation (sub
classing) is an important programming
tool in its own right. While it can be used to
support object-oriented programming, it
has wider uses. This is particularly true if
you associate inheri tance in object-
oriented programming with the idea that
a base class expresses a general concept of
which all derived classes are specializa-
tions. This idea captures only part of the
expressive power of inheritance, but it is
strongly encouraged by languages where
every member function is virtual (or a
method).

Given suitable controls over what is in-
herited,” class derivation can be a power-
ful tool for creating new types. Given a
class, derivation can be used to add and
subtract features. The relation of the re-
sulting class to its base cannot always be
completely described in terms of speciali-
zation; factoring is a better term.

Derivation is another programmer’s
tool and there is no foolproof way to pre-
dict how it is going to be used - and it is
too early (even after 20years ofsirnula) to
tell which uses are simply misuses.

Multiple inheritance. When class A is a
base of class B, B inherits the attributes of
A; that is, B is an A in addition to whatever
else it might be. Given this explanation, it
seems obvious that it might be useful to
have class B inherit from two base classes,
AI and A2. This is called multiple inheri-
tance.*

An example of multiple inheritance are
two library classes, the displayed class and
the task class, that respectively represent
objects under the control of a display
manager and coroutines under the con-
trol of a scheduler. A programmer could
then create classes such as

class my-displayed-task
: public displayed, public task

I;
// my stuff

class my-task
: public task { // not displayed

// my stuff
1;

class my-displayed
:public displayed { / / not a task

t ;
/ / my stuff

With single inheritance, only two of these
three choices are open to the program-
mer. This leads to code replication or loss
of flexibility- and typically both. In C++,
this example can be handled with no sig-
nificant overhead (in time or space), com-
pared to single inheritance, and without
sacrificing static type checking.’

Ambiguities are detected at compile
time:

classA(public:f(); ... 1 ;
class B public: f () ; . . . I ;
class C : public A, public B { . . . I;

voidgo I
C* p;

t
p > f () ; / /error: ambiguous

In this capability, C++ differs from the o b
ject-oriented Lisp dialects that support
multiple inheritance. In these Lisp dia-
lects, ambiguities are resolved by consider-
ing the order of declarations significant,
by considering objects of the same name
in different base classes identical, or by
combining methods of the same name in
base classes into a more complex method
of the highest class.

In C++, you would typically resolve the
ambiguity by adding a function:

class C : public A, public B 1
public:

f ()
1
// C’s own stuff
A::f();
B::f();

I
...

I
In addition to this fairly straightforward

concept of independent, multiple inheri-
tance, there appears to be a need for a
more general mechanism to express de-
pendencies between classes in a multiple-
inheritance lattice. In C++, the require-
ment that a subobject be shared in a class
object is expressed through the mecha-
nism of a virtual base class:

*This is the problem with Sirnula’s Inspect s ~ t e i n e m
and the reason it does not have a counterpart in C++.

class U‘ , , . 1;
class Bwindow / / window with border

18 IEEE Software

: piihlit \ i i tual \I
j . . . t :

class .Ilivindow
: puhlic 1 irtual \V
I . . . t :

cl;t5s I%.Il\V wiiido\\ with bordrr

: puhlic B~indow, puhlit 4lwiiidow

1 ’ \vindowwith mriiii

I/ allti lllellll

I . . . 1 :

Here, the single window siibobjcct is
?hared bv the Rwindow and Bwindow s i b
objects of a RMM’. The Lisp dialects use
mrthod combinations to ease program-
ming using such complicated class hierar-
chies. C++ docs not.

Encapsulation. (:oilsider a class member
(data or function) that must be protected
from unauthorized access. M’hat choices
are I-easonahlc t o deliniit the set of func-
tions that inay access that member?

The obvious aiisver for a language
supporting object-oriented programming
is “all operations defined for this object,”
o r all inember fiinctions. A hidden impli-
cation ofthisans~\cristhattherecannotbe
a complete and final list of all functions
that may access the protected member
since you can alivays add another by deriv-
ing a new class from the protected niern-
her’s class and then defining a member
function of that derived class. This ap-
proach combines a large degree of.protec-
tion from accidents (it’s not easy to define
a new derived class by accident) uith the
flexibilit! needed for t o o l building iising
clas hierarchies (y o u can grant yonrself~
access t o protected member-s by deri\ing a
class).

L’ n for-tun at el y, the o hi ous answe I for a
langiragc supporting data abstraction is
different: “1,ist the functions that need
;icccss in the class declaration.” There is
nothing special about these functions;
thcy need n o t be member functions.

X noninenit)ci- function with access to
pi-ivate class members is called aJnmd in
(:++. Class Complex, above, \vas defined
using friend functions. I t is sometimes im-
portant that a function may be specified as
a friend in more than one class. HaLing the
fu l l list of.nicnibcrs and friends available is
a great ad~antagc when you are tr!ing to
undcrstand the bchaiior o f a type and
especially when you want t o modify i t .

Here is an example that demonstrates
part of the range of choices for encapsula-
tion in C++:

class B 1
/ / class members are
/ / default private

int i l ;
void fl ():

protected:
int i2:
r.oidfL();

public:
i n t i3;
void f3 ();

friend void g(B*): //any function can bc

1;
//designated as a friend

Private and protected members are not
generally accessible:

void 11 (B* p)
I

p > f l (); // error: B::fl is privatr
p>f2(): //error: B::f? is protected
p > n () ; //fine: B::fl is public

I

Protected, but not private, members are
accessible to members of a derived class:

class D : public B 1
public:

voidg()
I

f l (); / / error: B::fl is private
fZ(): //fine: B::E isprotected,

// but D is derived from B
f3(): / /f ine: B::fl ispublic

I
t ;

Friend functions have access to private
and protected membersjust like member
functions:

void g(B* p)
I

p > f l () ; / / fine: B::f.l is private.
/ / bu tgo isafriendofB

p>f2(); //fine: B::n is protected,
// birtg() isafrieiidofB

p>t3() ; //fine: B::tl is public
I

The importance of encapsulation issues
increases dramatically as program sire in-
creases, and as the number and geo-
graphical dispersion of its users expands.
For a detailed discussion of encapsulation
issues, see SnydeP and Stroustrup.’

Implementation issues. Support for ob
ject-oriented programming is provided
primarily by the runtime system and the

programming cnvii-oniiicnt. 1’;ii-t of the
reason is that objcct+rientcd pl-ogram-
ming builds on rhc language iinpro\v
nients all-ead! pi-o\ided t o support data
abstraction, so 1-elatively fkw additions arc
needed.

This assume’ that an ol~jcct-oi.icnted
language docs indeed suppor-t data ab-

abstraction i + oftcn deficiclir in airch Iaii-

guages. Conversely, languages that s u p
port dara abstraction a1.c typic;llly defi-
citnt in their support of’ object-oriented
programming.

Object-oiiented programming further
blurs the distinction between a program-
ming langiiagt. and its en\ir-onnicnt. Bc-
cause more powerful special- and gencl-al-
purpose user-defined types call be de-
fined, the! pei7ade user programs. This
requires furthei- development of the ruii-
time system, library Facilities, dchuggrrs,
performance measuring, monitoring
tools, and so on. Ideally, tticsc ai-c inte-
grated into a unified pi-ogi.aniniing e11-
Lironment, of which Smalltiilk is the best
example.

StrdctiOll. HC)l.iC\Cr, the SUrIpOrt for data

Limits to perfection
To claim to be general-purpose, a lan-

guage that is designed to exploit the tcch-
niques of data hiding, data abstraction,
and object<iricnted programming must
also

run on traditional machines,
coexist with traditional operating sy-

teins,
compete with traditional ~ ~ O ~ I K I I I I -

ming tangiiagvs in runtime cfficicnc); and
cope with every major application

area.
This means that facilities must be avail-

able for effectkc nuincl-ical work (float-
ing-point arithmetic without over-head
that Would m i k e For-tran attr-active), and
n i c i n o ~ milst be accessible s o that dcricc
drivers @an hc written. I t must also he
possible t o write calla that conform to the
(oftcn rather strange) standards required
for operating-sptcm intcrf‘accs. In addi-
tion, it should be possible to call fiinctions
written in other languages fr-om it objcc-t-
oriented language and for functions writ-
ten in the objcct<)ricntcd language to he
called from a program lvrittrn i l i another
language.

May 1988 19

It also means that an object-riented lan-
guage cannot rely completely on mecha-
nisms that cannot be efficiently imple-
mented on a traditional architecture and
still expect to be used as ageneral-purpose
language. A very general implementation
of method invocation can be a liability un-
less there are alternative ivavs of request-
ing a service.

Similarly, garbage collection can be-
come a performance and portability bot-
tleneck. Most object-oriented program-
ming languages use garbage collection to
simplify the programmer’s task and to re-
duce the complexity of the language and
its compiler. However, it ought LO be
possible to use garbage collection in non-

Acknowledri!ments

critical areas while retaining control of
storage use in a r e a where it matters. As an
alternative, it is feasible to have a language
without garbage collection and then prtr
vide sufficient expressive power to enable
the design of types that maintain their own
storage. C++ is an example of this.

Exception handling and concurrency
are other potential problems. Any feature
that is best implemented with help from a
linker is likely to become a portability
problem.

The alternative to having low-level fea-
tures in a language is to handle major a p
plication areas using separate low-level
languages.

bject-oriented programming is
programming using inheritance. 0 Data abstraction is programming

using userdefined types. With few excep
tions, object-riented programming can
and ought to be a superset of data abstrar-
tion.

These techniques need proper lan-
guage support to be effective. Data ab-
straction needs support primarily in lan-
guage features; object-or iented
programming needs more support in the
programming environment. To be con-
sidered general-purpose, a language must
let you use traditional hardware effec-
tively. .:.

I~

An earlier version of this article was presented to the Association
of Sirnula Users meeting in Stockholm in August 1986. The discus-
sions there caused many improvements in both style and content.
Bi-ian Kernighan and Ravi Sethi made many constructive com-
ments. Also, thanks to all who helped shape C t t .

AN OUTSTANDING SEMINAR BY
THE IN TERNATIONALLY RECOGNIZED AUTHORITY ON ...

Software Cost Estimation Using

COCOMO - - - - ~-~ -
(Constructive Cost Model)

Special Feature: A Full Description of the
Recently Developed Ada COCOMO Model

COCOMO vs Other Cost Modelsfrechniques
Basic. Intermediate, Detailed COCOMO-

Tailoring COCOMO
COCOMO Extensions-Incremental Development,

FeaturedApplications

Acquisition management

PRESENTED BY:

DR. BARRY W. BOEHM
LOS ANGELES WASHINGTON, DC

June 13-14, 1988 June 9-10, 1988

For Information Call: (213) 5M.4871

References
1. K Nygaard, “Basic Concept, in Object-Oriented Programming,”

SIGPhn ,%firm, Oct. 1986, pp. 128-1 32.
2. R. Kerr, “Object-Based Programming: A Foundation for Reliable

Softwa-e,”I%c. 14th Simulu C!sm ‘(;(in$, Sirnula Inlonnation, Oslo,
Norway, 1986, pp. 159.165; a short version is “A Materialistic View
of the Sofmare ‘Engineering’ Analog); SIGJ’kn Notzm, March

3. T. Cargill, “IPI: A Case Study in ObjectQi-ietlted Programming,”
SIGPhn Nofires, Nov. 1986, pp. 350-360.

4. B. Liskov et al., “Abstraction Mechanisms in Clu,” Cnmm. ACM,
Aug. 1977, pp. 564-576.

5 . J , Shopiro, “Extending the C t t Task Systciii I o I Real-Time Appli-
cations,” 13ur. (5 m z x C++ Wcnkshvp, Cseiiix, Santa Monica, Calif.,

6. A. Snyder, “Encapsulation and Inhrritmce il l Object-0rienIed

7. B. Su-oiistrup, 7hr C++ Programming ImpiagP3 Addismi-Wesley,

8. D. Weinreb a i d D. Moon, l i sp Mnrhinr Mrinual, Synbolics, Cam-

9. B. Stroustrup, “Multiple Inheritance fo r C t t , ” I ’ m . Spring

1987, pp 123-125.

1987. pp. 77-94.

Programming Iaiguages,” SlGf’kin Notzrr.\, Nov. 1986, pp. 3845.

Reading, Mass., 1986.

bridge, Mass., 1981.

b.’urnpmn (’ n i x C k r s Croup Con{, EEUG, 1,ondon. 19x7.

Bjarne Stroustrup is the designer- and original implemen terof Ctt .
His research interests include distributed systems. operating sys-
tems, simulation, programming methodology, and programming
languages.

Stroustrup received an MS i n mathematics and computer science
from the University of-Aarhus and a PhI) i n coniputer science from
Cambridge University. He is a distinguisehd niemhei- of the Coin-
puter Science Research Center and is a member of IEEE and ACM.

Address questions about this ai-tick to the anthol- at AT&T Bell
Laboratories, f in, 2(:-324, 600 Mountain Avr., Mui-ray Hill, N J
07974.

Reader Service Number 4 IEEE Sottware

