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Ohjedenkntedhas 
become a buzzword 
that implies “good” 

proghmming But 
when it comes to 

really supporting this 
pardighm, not all 

l a m e e s  are equal. 

10 

ot all programminglanguagescan 
be object-oriented. Yet, claims 
have been made that APL, Ada, 

Clu, C++, Iaops, and Smalltalk are object- 
oriented languages. I have heard discus- 
sions of object-oriented design in C, Pas- 
cal, Modula-2, and Chili. Could there 
somewhere be proponents of object- 
oriented programming in Fortran and 
Cobol? I think there must be. 

“Object-oriented” has become a high- 
tech synonym for “good.” Articles in the 
trade presscontain arguments that appear 
to boil down to syllogisms like: 

Ada is good; object-oriented is good; 
thert$oore, Ada is object+niated. 

This article presents my view ofwhat o b  
ject-oriented means in the context of a 
general-purpose programming language. 
I present examples in C++, partly to in t re  
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duce C++ and partly because C++ is one of 
the few languages that supports data a h  
straction, object-oriented programming, 
and traditional programming techniques. 
I do not cover issues of concurrency and 
hardware support for specific, higher level 
language constructs. 

Programming paradigms 
Object-oriented programming is a tech- 

nique - a paradigm for writing “good” 
programs for a set of problems. If the term 
“object-oriented language” means any- 
thing, it must mean a language that has 
mechanisms that support the object- 
oriented style of programming well. 

There is an important distinction here: 
A language suppurtsa programming style if 
i t  provides facilities that make it con- 
venient (reasonably easy, safe, and efi-  
cient) to use that style. A language does 
not support a technique if i t  takes excep 
tional effort or skill to write such pro- 
grams; in that case, the language merely 
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wrcilhc prograinmcrs to use the techniqiie. 
For examplc,you can wire structured pro- 
grains in Fortr;in and type-sccurc pro- 
grams i n  C, and y o ~ i  can use data ahstrac- 
tioii in Moclul>tZ, but i t  is iinnecessarily 
hard to do so because those languages do 
not .support those techniques. 

Support for a p i d i g i n  conics not o n l y  
in the obvious f o i - i n  of language facilities 
that let you use the paradigm directly, bur 
also in  the niorc subtle forms of compilc- 
tiin<= ai id  runtime checks foi- uniiiten- 
tional deviations f'rom the paradigm. Type 
checking, ambiguity detection, and run- 
time checks are an examples of linguistic 
support for paradigms. Extralinguistic 
facilities such as standard librarics and 
pi-ograinrning einironments can a l s o  prw 
\idr significant support for paradigms. 

One language is not nccessarily better 
than another because i t  has a feature the 
other does not - therc are many ex- 
amples to the contrary. The impormiit 
issue is not how many features a language 
has, but that the features it docs have are 
sufficient t o  support the desired program- 
ming styles in the desired application 
areas. Specifically, it is important that: 

All features are cleanly and elegantly 
integrated into the language. 

I t  is possible to cornhilie features to 
achieve solutions that would have other- 
wise required extra, separate features. 

There arc as few spurious arid special- 
pirposc features as possible. 

Implementing a feature does not im- 
pose significant overhead on programs 
that do not require it. 

A user need o n l y  know about the lan- 
guage subset used explicitly to write a pro- 
gram. 

The last two principles can be suni- 
marized as "what you don't know won't 
hurt you." If. there are any doubts about 
the usefulness o f a  feature, i t  is better left 
out. It  is much easier to add a feature to a 
language than to remove or modifv one 

digin is filled with discussions of how to 

A languee does not 
s u m t  a fechique if 
it takes exceptional 

e m r t  or skill to write 
such proglams. 

pass arguments, how to distinguish differ- 
ent kinds ofargumcnts and different kinds 
of functions (procedures, routines, mac- 
ros, etc.), and so on. 

Fortran is the original procedut al lan- 
guage; Algold0, Algol-68, C, and Pascal are 
later inventions in the same tradition. 

An example of good procedural style is a 
square-root function. Given an argument, 
the function neatly produces a result. To 
do so, i t  performs a well-understood math- 
ematical computation. 

double sqrt(doublc arg) 
I 

I 

void some-function () 
I 

/ /  the rode for calcdating a squarv 1-oot 

double root2 = sqrt (2) ;  
/ /  ...  

I 

that has found itsway into the compiler or ' 
the literature. 

Procedul-al programming uses frrnc- , tions tv ci-catc oi-dcr in  a maze of a l p  
rithms. 

Procedural. The original - arid pi-ob 1 
ably still the most cvnirnoii - program- 
rning paradigm is: 

Data hiding. Over the years, the empha- , sis in the progi-am design has shifted from 
procedure design t o  data organization. 

~ Among ot~ici- things, this reflects an in- Dmdr  rohirh prowilurrs you want: I L W  lhr 
I m t  iilgonlhms y m  cnn,/ind. 

crc'ae in prograni size. '4 set ofrelated p r e  
The foC1l.S is on proccdnrc design -the ~ cedures and the data they manipulate is 

often called ii ~notlule. The programming 
pal-adigni is: 

algorichtn needed to pelform the desired 
computation. Iaiguages support this par- 
adigm with facilities for passing arguments 
to fnnctions and retLlrning values 1 functions. The literature about this para- 

Zlrridr ~ i ~ h i ~ h  moduIr.rycnL w(m~;pn?lzlion 
theprop-(on ,si) thnt dntn is hiddm in 
m o d u h  . 

This paradigm is known as the data-hid- 
ing principle. U%en procedures do not 
need to be grouped with related data, the 
procedural style suffices. I n  fact, the tech- 
niques for designing good procedures are 
still applied, now to each procedure in a 
module. 

The most coninion example ofdata hid- 
ing is a definition of :I stack module. A 
good solution requires 

a user interface for the stack (for ex- 
ample, thefLinctionspustl() and pop()),  

that the stack representation (for ex- 
ample, a vector of elements) can be 
accessed only through this user interface, 
and 

that the stack is initialized before its 
first use. 

A plausibly external interface for astack 
module is 

,(I declai-ation of tlic inteifare of module 
/ /  stackol characters 
chai-pop(): 
void push (char) : 
const sr-nck-cife = 100; 

Assuming this interface is found in a file 
called stark.h, the intemalscan bedefined 
like this: 

#include "5utk.h" 
static charv[stack-siie]: / /  " s t a t i c "  means 

// local to this 
/ /  file/rnodule 
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static char* p = v; 

char pop() 
I 

I 
void push (char c) 
I 

I 

It is quite feasible to change this stack 
representation to a linked list. The user 
does not have access to the representation 
anyway (because v and p were declared 
static - that is, local to the file or module 
in which theyweredeclared). Such astack 
can be used like this: 

#include "stack.h" 
void some-function() 
I 

// the stack is initially 
// empty 

// check for underflow and pop 

// check for overflow and push 

chart= pop(push('c')); 
if (c != 'c') error("impossib1e"); 

I 

As originally defined, Pascal doesn't pro- 
vide satisfactory facilities for such group 
ing: The only way to hide a name from the 
rest of the program is to make it local to a 
procedure. This leads to strange proce- 
dure nestings and overreliance on global 
data. 
Cfaressomewhatbetter.Asshown in the 

example, you can define a module by 
grouping related function and data defini- 
tions in a single source file. The program- 
mer can then control which names are 
seen by the rest of the program (a name 
can be seen by the rest of the program un- 
lessit has been declared static). So in C you 
can achieve a degree of modularity. 
However, there is no generally accepted 
paradigm for using thisfacility, and relying 
on staticdeclarations is rather low-level. 

One of Pascal's successors, Modula-2, 
goesa bit further. It  formalizes the module 
concept by making it  a fundamental con- 
struct with welldefined module declara- 
tions, explicit control of the scope of 
names (import/export facilities), a mod- 
ule-initialization mechanism, and a set of 
generally known, accepted usage styles. 

In other words, C enables the decom- 
position of a program into modules, while 
Modula-2 supports it. 

Data abstraction. Programming with 
modules leads to the centralization of all 
data of a certain type under the control of 

a type-manager module. Ifyouwanted two 
stacks, you would define a stack-manager 
module with an interface like this: 

// stack-id is a type; no details about 
// stacks or stackjds are known here: 

// make a stack and return its identifier: 

// call when stack is no longer needed: 

class stack-id; 

stack-id create-stack(int size); 

destroy-stack(stack-id); 
void push(stack-id, char); 
char pop(stack-id); 

This is certainly a great improvement 
over the traditional unstructured mess, 
but "types" implemented this way are 
clearly very different from the types built 
into a language. 

I n  most important  aspects, a type 
created through a module mechanism is 
different from a built-in type and enjoys in- 
ferior support: Each type-manager mod- 
ule must define a separate mechanism for 
creatingvariables of its type, there is n o e s  
tablished norm forassigningobject identi- 
fiers, a variable of such a type has no name 
known to the compiler or programming 
environment, and such variables do not 
obey the usual scope and argument-pass 
ing rules. 

For example: 

void f() 
I 

stack-idsl; 
stack-id s2; 

S I  = create-stack(200); 
// Oops: forgot to create s2 

char c 1 = pop (s 1 ,push (s  1 ,'a')) ; 
if (cl != 'c') error("impossib1e"); 

char c2 = pop(s2,push(s2,'a')); 
if (c2 != 'c') error("impossih1e"); 

destroy(s2); 
// Oops: forgot to destroy S I  

I 

In other words, the module concept that 
supports the data-hiding paradigm ena- 
blesdataabstraction, but doesnot support 
it. 

Abstract data types. Languages such as 
Ada, Clu, and C++ attack this problem by 
letting the user define types that behave in 
(nearly) the same way as built-in types. 
Such a type is often called an abstract data 
type, although I prefer to call it a userde- 

fined type.* The programming paradigm 
becomes: 

Decide which types you want; plovide afull 
set ofoperationsfor each type. 

When there isnoneedformore thatone 
object of a type, the data-hiding program- 
ming style using modules suffices. Arith- 
metic types such as rational and complex 
numbers are common examples of user- 
defined types: 

class complex 1 

public: 
double re, im; 

complex(doub1e r, double i )  { re=r; im=i; 1 
// float->complex conversion: 
complex(doub1e r) { re=r; im=O; 1 
friend complex operator+ 

// binary minus: 
friend complex operator- 

/ /  unary minus: 
friend complex operator-( complex) ; 
friend complex operatort 

friend complex operator/ 

// ... 

(complex, complex); 

(complex, complex); 

(complex, complex); 

(complex, complex); 

I 

The declaration of the complex class 
(the userdefined type) specifies the repre- 
sentation ofacomplexnumberand theset 
of operations on a complex number. The 
representation is @'vu& that is, re and im 
are  accessible only to the functions 
specified in the declaration of class com- 
plex. Such functions can be defined like 
this: 

complex operatoi-+ 

I 
(complex a l ,  complex a2) 

return complex 
(a1 .reta2.re,al .inita2.im); 

t 

and used like this: 

complex a = 2.3; 
complex h = I /a; 
complex c = a+b*complex( 1,2.3); 
// ... 
c = -(a/h)t2; 

Most, but not all, modules are better ex- 

*As Doug Mcllroy has raid, 'Those typrs are not 'ab  
stract,' the) arc a real as rnrand/7mf."Another defini- 
lion ofabsuact data types would requirr a mathrmatical 
"abstract" sprcification of all ppes (both builr-in and 
iiserdcfinrd). What is referred to as typc's in this ai-tick 
would. given such a specification. hr coticrete specifica- 
tions of such triilv abstrncr rntities. 
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pressed as userdefined types. When the 
programmer prefers to use a module r e p  
resentation, even when a proper Facility 
for defining types is available, he can de- 
clare a type that has only a single object of 
that t)pe. Alternatively, a language might 
pi-ovidc a module concept in addition to 
and distinct from the class concept. 

~rohIP7m ti userdefined type defines a 
sort of black box. Once i t  has been de- 
f i n d ,  it does not really interact with the 
rest ofthe program. The onlywav to adapt 
it to new uses is to modify its definition. 
This is often too inflexible. 

Consider defining a type shapfOr use in 
agraphics system. Asume for the moment 
that the system has to support circles, trian- 
gles, and squares. Assunie also that you 
have some classes: 

class point! / *  ... * /  1; 
class colol-j /* ... * /  1; 

You might define a shape like this: 

eniiin kind ! circle, triangle, square 1; 

class shapc ! 
point tenter; 
color- col: 
kind k;  
// representation ofshape 

point where() 1-rtiirii trnter; 
Loid movr(poiiit to) ! trtitri- = to;  draw(); 

void draw ( ) ; 
1 oid rotate(int) : 
/ /  inorr operations 

public: 

t 

I: 

The t)pr field. k ,  is used by operations 
such a5 draw() and rotate() to determine 
what shapr they are dealing with (in a Pas- 
cal-like language, you might use a variant 
record with tag k ) .  The function draw() 
might be defined like this: 

wid shapc,::drau ( )  
! 

switch (k )  j 
c-ax (ii-clc: 
/ /  draw ii cirrlc. 
break; 

/ /  draw a trianglr 
bsrak; 

// drawa sqiia~-e 

case triangle: 

caw sqiiarc: 

I 
1 

This is a mess. I t  requires that functions 

such as draw() know about all the kinds o f  
shapes there are. Therefore, the code for 
any such function must by modified each 
time a new shape is added to the system. 

If you define a new shape, every opera- 
tion on a shape must be examined and 
(possibly) modified. You cannot add a new 
shape to a system unlessyou have access t o  

the source code for every operation. Be- 
cause adding a new shape involves touch- 
ing the code of every important operation 
on shapes, i t  can require great skill and 
may introduce bugs into the code that 
handles the older shapes. 

Also, your choice of how you represent 
particular shapes can be severely cramped 
by the requirement that at least some of 
their representation fit into the typically 
fixed-sized framework presented by the 
definition ofthe general type shape 

The problem is that there is no distinc- 
tion between the general properties ofany 
shape (ashape hasacolor,itcan bedrawn, 
etc.) and the propertiesof a specific shape 
(a circle is a shape that has a radius, is 
drawn by a circle-drawiiig function, etc.). 

Object-oriented programming. T h e  
ability to express this distinction and take 
advantage of it defines object-oriented 
programming. A language with constructs 
that let you express and use this distinction 
supports object-oriented pi-ogramming. 
Other languages don’t. 

The Simula inheritance mechanism 
provides asolution. First, you specify a class 
that defines the general properties of all 
shapes: 

c l a s  shape ! 
point center; 
color col; 
/ /  ... 

public: 
point where() j setui-ii center; } 
void movr(point to) { trnte1- = to; draw():  

vii-tualvoid d raw( ) ;  
vii-tual void Iot;itc( int); 
/ /  ... 

I 

1; 

The functions marked klirtual are those 
for which the calling interface can be de- 
fined, but the implementation cannot be 
defined except for a specific shape. (‘Vir- 
tual” is the Simula and [:++ term for “may 
be redefined later in a class derived from 
this one.”) Given this definition, we can 

write gencral functions t o  manipulate 
shapes: 

wid rotatc-all 

/ /  rotiitr all nicmlwrs of \ectoI “ v ” o l  aiie 
// “sire” “mglr” dcgrrrs 
I 

(shape* v, i i i t  siic. i i i t  mgle) 

foi- (int i = 0: i < sile; i++) 
v[i].rotatr(;ingle); 

To define a particular shape, you must 
say that i t  is a shape and spccify its particu- 
lar properties: 

clas5 cii-cle : public sh‘tpr { 

public: 
int radius: 

voiddraw() ! / *  ... */ I ;  

t ;  
InC++,the circleclassissaid tobc dm’wd 

from the shape class, and the shapc class is 
said t o  be a hatrofthe circle class. Anothel- 
terminolop calls circle a subclass and 
shape a superclass. 

The programming pai-adigin is: 

1)mridr wliicli cimsrc you 71inni; /)ro71i& (1 

pill srt (iJ oprm~ionsJm- rtzrh rhss; wu~kr 
co~nrnoncilzty rxplitit using in1~m“lancP 

Where tlierc is no such comrnoriality, 
data abstraction suffices. I {ow much types 
have in common s o  that the conimonality 
can be exploitcd using inhet-itance and \4r- 
tual fhct ions is the liunus test ofthe appli- 
cability ofot?jcct~)ricnted progi-animing, 

In sonic areas, such as interactive graph- 
ics, there is clearly enormous opportunity 
for- object-orirntcd programming. In 
other areas, such as classical arithmetic 
types and the computations based on 
them, there appears to be hardly any need 
for more than data abstraction.* 

Finding cornrnonalit)~ among types in a 
system is not ii trivial proccss. How much 
commonalit! can be exploited depends 
on how the system is dcsigncti. (:on- 
monality inlist be actively sought when the 
system is drsignrd, borh by drsigning 
classes specifically as building blocks for 
other typesatid bycxaminingclassrstosee 
if they have similarities that can be ex- 
ploited in a common base class. 

~ ~- 
*Howr\cl.  morr .id\anrcd m.ilhriiiatic \ i i i in bcnrlit 
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Nygaard' and Kerr' explain what object- 
oriented programming is without re- 
course to specific language constructs; 
Cargill has written a case study in object- 
oriented pr0gramming.l 

Supporting data 
abstraction 

Programming with data abstraction is 
supported with facilities both to define a 
set of operations for a type and to restrict 
access of objects of that type to that opera- 
tion set. However, once that is done the 
programmer soon finds that language re- 
finements are needed to define and use 
the new types conveniently. 

lnitializationandcleanup. When a type's 
representation is hidden, some mecha- 
nism must be provided for a user to initial- 
ize variables of that type. A simple solution 
is to require a user to call some function to 
initialize avariable before using it. For ex- 
ample, 

class vector { 
in t sz; 
int* v; 

public: 
void init(int size); //call init to initialize 

// szandv before the 
// first use of avector 

// ... 
I ;  
vector v; 
// don't use v here 
v.init( IO);  
// use v here 

This iserror-prone and inelegant. Abetter 
solution is to allow the designer of a type to 
provide a distinguished function to do the 
initialization. Such a function makes all* 
cation and initialization of a variable a 
single operation (often called instantia- 
tion) insteadoftwooperations. Suchan in- 
stantiation function is often called a con- 
structor. 

In caseswhere constructingobject types 
isnontrivial,itisoften necessarytoprovide 
a complementary operation to clean up 
objects after their last use. In C++, a 
cleanup function is called a destructor. 
Consider a vectortype: 

class vector { 
int sz; / /number ofelements 
int* v; 

vector(int); // constructor 

// pointer to integers 
public: 

-vector(); // destructor 
int& operator[] (int index); // subscript 

// operator 
t ;  

The vectorconstructor can be defined to al- 
locate space like this: 

vec tor::vector (in t s) 
I 

if (s<=O) error("badvector size"); 
sz = s; 
v =  newint[s]; // allocatean array 

// of "s" integers 
t 

The vectordestructor frees storage: 

vector::-vector() 
1 

delete v; // deallocate the memory 
// pointed to by v 

I 

C++ does not support garbage collection. 
It compensates for this by letting a type 
maintain its own storage management 
without user intervention. While this is a 
common use for the constructor/destruc- 
tor mechanism, many uses of this mecha- 
nism are unrelated to storage manage- 
ment. 

Assignment and initialization. Control- 
ling the construction and destruction of 
objects is sufficient for many types, but not 
for all. Sometimes, it is also necessary to 
control copy operations. Consider the vec- 
tor class: 

vectorvl(100); 
vector v2 = v l  ; // make a new vector v2 

V I  =v2; //assignv2tovl 
// initialized to V I  

It must be possible to define the meaning 
of the initialization of v2 and its assign- 
ment to V I .  It should also be possible to 
prohibit such copy operations; preferably 
both alternatives should be available. For 
example: 

int* v; 
int SL; 

public: 
/ /  ... 
void operator=(vector&); // assignment 
vector(vector&); // initialization 

class vector 1 

I ;  

specifies that user-defined operations 
should be used to interpret vector assign- 

ment andinitialization. Assignment might 
be defined like this: 

vector::operator= (vector& a) 

I 
// check size and copy elements 

if (sz != a.s/;) 
error("badvector s i x  for ="); 
for (inti = 0; i<sr; i t + )  v[i] = a.v[i]; 

I 

Since the assignment operation relies on 
the old value of the vector being assigned 
to, the initialization operation must be 
different. For example: 

vector::vector(vector& a) 

{ 
/ /  initialize avector from another vector 

SL = a s / ;  / /  same size 
v=newint[sz]; // allocateelementarray 
/ /  copy elements: 
for ( inti=Oi<sz;i t+) v[i] =a.v[il; 

I 

In C++, a constructor X(X&) defines all in- 
itialization of objects of type Xwith 
another object of type X. In addition to ex- 
plicit initialization, constructors of the 
form X(X&)are used to handlearguments 
passed by value and function-return 
values. 

In C++, assignment of an object of class 
X can be prohibited by declaring the as- 
signment operation private: 

class x [ 
void operator=(>(&); / /  only members 

X(X&); / /  copy an X 
/ /  of x can 

. . .  
public: 

I ;  
. . .  

Add does not support constructors, de- 
structors, assignment overloading, or 
userdefined control of argument passing 
and function return. This lack of support 
severely limits the class of types that can be 
defined and forces the programmer back 
to data-hiding techniques: The user must 
design and use type-manager modules in- 
stead of proper types. 

Parameterized types. Why would you 
want todefine avectorofintegersanyway? 
Typically, a user needsavector ofelements 
of some type unknown to the writer of the 
type urctor. Consequendy the vector type 
ought to be expressed so it takes the ele- 
ment type as an argument: 
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c l a s  vcctor<class 'I> { 

T* v; 
int sr; 

public: 
vcrtor(int s j  
{ 

/ /  vrrtoi- of elements of  type 1 

if (s <= 0) error("hadvector sire"); 
v =  newT[sr=s]:  //allocateanarray 

I 
T&operator[] ( inti) ;  
int sire() { retur-n s/; 1 
// ... 

1; 

Vectors of specific types can now be de- 
fined and used: 

vrctor-<iiiovl(100); / / V I  isavector 

vrctor<complex>v2(200); / /  v2is avector 
// of 100 integei-s 

/ /  of 200 complex 
/ /numbers 

v2[i]  =complex(vl[xl,vl [)I):  

Ada and Clu support parameterized types. 
Unfortunately, C++ does not; the notation 
used here is still experimental. When they 
are needed, parameterized classes are 
faked with macros. There need not be any 
runtime overheads compared with a class 
where all types involved are specified 
directly. 

Typically, a parameterired type will have 
to depend on at least some aspect of a type 
parameter. For example, some of the vec- 
tor operations must assume that assign- 
ment is defined for objects of the parame- 
ter type. How can you ensure that? One 
way is to require that the designer of the 
parameterized class state the dependency. 
For example, "T must be a type for which = 
is defined." A better way is not to require 
this - or to take a specification of an argu- 
ment type as a partial specification. Acom- 
pilercan detectifaamissingoperation has 
been applied and give an error message 
such as 

cannot define 
vrcto~-<non~cop~->::operator[] (non-copy&): 

vpe non-copy does not have operator= 

This technique letsyoudefine typeswhere 
the dependency on attributes ofaparame- 
ter type is handled at the level of the in- 
dividual operation of the type. For ex- 
ample, you might define a vector with a 
sort operation. The sort operation might 
use <, ==, and = on objects of the parame- 
ter bpe. Itwould still be possible to define 

vectors of a type for which < was not de- 
fined, as long as the vector-sorting opera- 
tion was not actually invoked. 

A problem with parameterized types is 
that each instantiationcreatesan indepen- 
dent  type. For example, the type upr- 
tor<char> is unrelated to the type uer- 
tor<romplex>. Ideally you would like to be 
able to express and use the commonality 
of types generated from the same paranie- 
terized type. For example, both uer- 
tor<char, and vector<cornplex> have a size() 
function that is independent of the pa- 
rameter type. It  is possible, but not easy, to 
deduce this from the definition of class 
vector and then let size() be applied to any 
vector. An interpreted language or a lan- 
guage that supports both parameterized 
types and inheritance has an advantage 
here. 

Exception handling. As programs grow, 
and especially when libraries are used ex- 
tensively, standardsfor handling errors (or 
"exceptional circumstances") become ini- 
portant. 

Ada, Algol48, and Clu each support a 
standard way to handle exceptions. Unfor- 
tunately, C++ does not. When necessary, 
exceptions are faked using pointers to 
functions, exception objects, error states, 
and the C library's signal and longjmp 
facilities. This is not satisfactory because it 
fails to provide even a standard framework 
for error handling. 

Consider the vector example again. 
What should be done when an out-of- 
rangeindexvalueispassed to thesubscript 
operator? The designer of the vector class 
should be able to provide a default be- 
havior for this: 

class vector 

except vector-range { 
/ /  define an exception called 
/ /  vector-range a i d  specifv default 
// code for handling it 
error("g1obal: vector range error"); 
exit (99) ; 

I 
I 

Instead of calling an error function, uer- 
tor::operatm[]() can invoke the exception- 
handling code: 

int&vector::operator[] (inti) 
l 

it (04  I 1  s/<=i) iaiw \ccroI-ratigc; 
w t i i i n i  v [  i ]  : 

I 

This will cause thr call stack t o  be 1111- 

raveled until an cxception hmdlcr for UP<- 

tor-rctng-pis found and executed. 
An exccption handlet- rnay he definrd 

for a specific block: 

void E( j { 
veCtOl-v( I O ) ;  

ci-rors hei-c ;ire tiandlrtl 
by the local cxceprioii 
handler tielined l x i o w  

/ /  ...  

v[i]  = 7; 
I 
rxccpc 1 

/ /  potential range CI.I.OI 

\'er toir:vcc to i--n tigr : 
eri-or("f ( ) :  vector miigc VI-I-01"): 

rerwn: 
I 

/ /  cIIoI\ l1eI-e ii1-t' ll;llldlcd b y  the 
// globnl exception h;uidlci 
/ /  defined in vec.toi- 

i n t i  = g(  ) ;  

v[ i ]  = 7: 

/ /  g niiglir c;trisc a rangr 
/ /  error rising sonic vector 
/ /  potenrial range vi-roi- 

I 

There are many ways to define exceptions 
arid the behaiior of exception handlers. 
The facilit) sketched here resembles the 
ones found in Modula-2+. This style of.ex- 
ception handling can be iinplrrnented so 
that code is not executed unless iin excep 
tion is raised (except possibly for some in- 
itialiration code). I t  can also be ported 
across most <; iiriplernentations by using 
setjmp() and longjmp() (sec the <;library 
manual for your system). 

Could exceptions, as defined above, be 
completely faked in  a language such as 
C++? Unfortunately, no. The snag is that 
when an exception occurs, the runtime 
stack must be iinravclcd up to a point 
where an exception handler is defined. To 
do this properly in  <:++ involves invoking 
destructors defined in the scopes in- 
volved. This is not done by a <; longjmp() 
and cannot in  general be done by the user. 

Coercions. U ser-de f i  t i  e d  coc rc io n s , 
such as the one from floating-point num- 
bers to complex numbers implied by the 
constructor comnjhx(doubk), have proven 
unexpectedly useful in C++. Such coer- 
cions can be applied explicitly or the prw 
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grammer can rely on the compiler to add 
them implicitly where necessary and un- 
ambiguous: 

complex a = complex( I ) ;  
complex h = I ;  

a = btcomplex(2); 
a = h+2; // implicit: 

// implicit: 
// 1 ->complex( I )  

// 2-> complex(2) 

Coercions were introduced into C++ be- 
cause mixed-mode arithmetic is the norm 
in languages for numerical work and be- 
cause most userdefined types used for cal- 
culation (of matrices, character strings, 
and machine addresses) have natural 
mappings to and from other types. 

One use of coercions has proven espe- 
cially useful in organizing programs: 

complex a = 2; 
complex h = a+2; // interpreted as 

//operator+ 
// (a,complex(2)) 

b = 2ta; //interpreted as 
//operator+ 
// (complex(2)d 

Only one function is needed to interpret + 
operations, and the two operands are 
handled identically by the type system. 
Furthermore, class complex is written 
without any need to modify the concept of 
integers to enable the smooth and natural 
integration of the two concepts. 

This is in contrast to a “pure” object- 
oriented system, where the operations 
would be interpreted like this: 

a+2; // a.operatort(2) 
2ta; // 2.operator+(a) 

making it necessary to modify the integer 
class to make Z+alegal. 

You should avoid modifying existing 
code as much as possible when adding new 
facilities to a system. Typically, object- 
oriented programming offers superior 
facilities for adding to a system without 
modifying existing code. In this case, how- 
ever, data-abstraction facilities provide a 
better solution. 

Iterators. A language that supports data 
abstraction must provide a way to define 
control  structure^.^ In particular, users 
need amechanism to define loopsover the 
elements contained in an object of some 
userdefined type, without forcing them to 
depend on implementation details of the 

user-defined type. Given a sufficiently 
powerful mechanism for defining new 
types and the ability to overload operators, 
this can be handled without a separate 
mechanism for defining control struc- 
tures. 

For a vector, defining an iterator is not 
necessary because an ordering is available 
to a user through the indices. I’ll define 
one anyway, to demonstrate the tech- 
nique. 

There are several iterator styles. My 
favorite relies on overloading the function 
application operator ():* 

class vector-iterator [ 
vector& v; 
inti; 

public: 
vector-iterator(vector& r) { i = 0; v = r; ) 
intoperator() () 

{ return i<v.size() ?v.elem(itt) : 0;) 
t :  

A vector-iterator type can now be declared 
and used for a vector: 

vector v( sz): 
vec tor-iterator next (v) ; 
inti; 
while (i=next()) print(i); 

More than one iterator can be active for a 
single object at one time, and a type may 
have several different iterator types de- 
fined for it so different kinds of iteration 
can be performed. An iterator is a rather 
simple control structure. More general 
mechanisms can also be defined. For ex- 
ample, the C++ standard library provides a 
coroutine c l a s s  

For many container types, such as vector, 
you can avoid introducing a separate iter- 
ator type by defining an iteration mecha- 
nism as part of the type itself. A vectortype 
might be defined to have a “current ele- 
ment”: 

class vector { 
int* v; 
int sz; 
intcurrent; 

public: 
// ... 
int next() 
{return (currentt+<sz) ?v[current] : 0; I 
intprev() 
{ return (&--current) ?v[current] : 0 I 

1; 

*This style also relies on the existence ofadistinct value 
to represent end of iteration. Often, in particular for 
Ctt pointer ws, Ocan be used. 

Then the iteration can be performed like 
this: 

vector v( sz); 
inti; 
while (i=v.next() ) print ( i )  ; 

This solution is not as general as the itera- 
tor solution, but it avoids overhead in the 
important special case where only one 
kind of iteration is needed and where only 
one iteration at a time is needed for avec- 
tor. 

If necessary, you can apply a more 
general solution in addition to this simple 
one. The simple solution requires more 
foresight from the designer of the con- 
tainer class than does the iterator solution. 
The iterator-type technique can also be 
used to define iterators that can be bound 
to several different container types, thus 
providing a mechanism for iterating over 
different container typeswith asingle iter- 
ator type. 

Implementation issues. Suppor t  for 
data abstraction is primarily provided in 
the form of language features imple- 
mented by a compiler. However, parame- 
terized types are best implemented with 
support from a linker with some knowl- 
edge of the language semantics, and ex- 
ception handling requires support from 
the runtime environment. Both can be im- 
plemented to meet the strictest criteria for 
both compile-time speed and efficiency 
without compromising generality or prcl 
grammer convenience. 

As the power to define types increases, 
programs will depend increasingly on 
types from libraries (and notjust those de- 
scribed in the language manual). Thisnat- 
urally puts a greater demand on facilities 
toexpresswhatisinsertedinto orretrieved 
from a library, for finding out what a li- 
brarycontains, fordeterminingwhatparts 
of a library are actually used by a program, 
and so on. 

For acompiled language, facilities to cal- 
culate the minimal compilation necessary 
afterachangeareimportant. It isessential 
that the linker/loader can bring a prcl 
gram into memory for execution without 
also bringing in a lot of related but unused 
code. In particular, a library/linker/load- 
er system that includes the code for every 
operation on a type in the executable prcl 
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Supporting 
dojectaiented 
programming 

The lmsic support functions a prograin- 
met- needs t o  Lvrite otijcct-oriciitc.tI pi-tr 
grains arc a class iriechxiism ivi th  iiilieri- 
tancc and a inech;iiiisni that lets calls of 
member fiinctions depend on the actual 
object t)-pe (\\-lien the actual type is uri- 
kno\\m a t  coinpile time). 

The design of the iiieinl,er-f~inctioii call- 
ing rnechanism is critical. I n  atltiitioii. 
1'. . ' I '  ' 'IC I i t  ics I hat siipport data-ahstrac tion 
techniques a rc  important liecause the ar- 
giiiiieiits 101- (lata ahstraction and for its I-e- 
finrincnts to use types elegantly a r e  
equal1 y wlid \vh ere sup p( )rt foi- o tije c t- 
oriented progi-animiiig is available. 

The sticccss of Imth techniques hinges 
on thedesi~rioft~peaantion thrrasr,flex- 
ibility, and efficiency o f  such t\pcs. object- 
oriented programming simply lets user- 
defined t)'pes be far more flexible and 
gcncral than the ones designed using only 
data-abstraction techniques. 

Calling mechanisms. The key laiiguage 
facility to support object-oi-ienterl pro- 
grarniiiing is the rnechanism by which a 

member fiinction is invoked for an object. 
Foi- example, gi\en pointer p ,  how is ii call 
/e/(arg handled? There is a range o f  
choices. 

I n  languages such as (:++ ;ind Simrila, 
whcr-e static type checking is used cxtcii- 
sivcly, the type system can select bet\veen 
different c;illing mechanisms. I n  (:++, 
there are two alternatives: 

1. Normal function (AI: The member 
function t o  call is determined at compile 
time (through a lookup in the coinpilet-'s 
symbol tables) and called with the stan- 
dard functioncall niechanism, with a n  ar- 
gument added to identify the object for 
which the function is called. M h n  the 

liinction semantics. This optitiii/;itioii is 
equally valuable as a support f0r data a b  
straction. 

2. \'irtual fiinction call: The fiuiction 
called depends on the object t)pe, ivhich 
usually cannot be determined until  i- i i i i-  

time. Typically, the pointer p will he of 
some base class Band the object \\ill be an 
object of some derived class I ) .  The call 
mechanism must look into the object and 
find some infijrmatioti placed there by the 
compiler to determine which function /is 
to he called. Once i l i a  function, say 11::L is 
found, i t  is called i t h  the mechaniwi tle- 
sciitied above. At cornpile time, the name 
/is converted into an index t o  a table con- 
taining pointers to fiinctions. This \ii-tiial- 
call mechanism can essentially be rnatle a s  

efficient as the normal fiinction<.all incch- 
anisrn. I n  the  s tandard  (;++ irnple- 
men tat ion, o n l y  five additional 111em~ )ry 
references are used. In cases where the ac- 
tual type can be deduced at compile time, 
even this overhead iseliminated and in-lin- 
ing can be used. Such cases are quite com- 
mon arid important. 

In languagesmith w w k  stxic type c h c ~ k -  
ing, a third, more elaborate alternative 
must be used. In ;I languagr like Smalltalk, 
a list of the names of;111 ineiiibei. fiiiictions 
(callrd methods) of a class are stor-rrl so 
the! can be found at  runtime: 

3. Method invocation: The appropriate 
table o f  method iiarnes is first foiind bp ex- 
amining the object that ppoints to. 1 1 1  this 
table (or set oftables), the stringjis looked 
up to see i f theo t~ jcc thasan~) .  I fan / ( )  is 
found, it is called; othenvise, some error 
handling takes place. This lookup differs 
from the lookup done a t  compile tinir in a 
statically checked language because the 
method invocation uses a method table for 
the actual object. 

A method invocation is inefficient com- 
pared with a virtual function call, but i t  is 
more flexible. Since static type checking of 
arguments qpically cannot be done for a 
method invocation, the use of rnerhods 
must be supported by dynamic type check- 
ing. 

standard function call is not efficient 
enough, the programmer can declare a 
fiinction to be in-line and the cornpilrr-bill 
try to expand its body in-line. This lets y o u  
achieve the efliciency of ;I macro expaii- 

Type checking. The shape example car- 
lier showed the power oftirtiial functioiis. 
What else does a mcthod-invoc;irion 
mechanism do for you? I t  lets you invoke ), = cs.,,(,,,( 1: 

sion without compromising the standard any method for any object. p->t;ll\eoff (i: 
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The use of static type checkingand virtual 
function calls leads to a somewhat differ- 
ent style of programming than does dy- 
namic type checking and method invoca- 
tion. For example, a Simula or C++ class 
specifies a fixed interface to a set of objects 
(of any derived class), while a Smalltalk 
class specifies an initial set of operations 
for objects (of any subclass). In other 
words, a Smalltalk class is a minimal speci- 
fication and the user is free to try opera- 
tions not specified, while a C++ class is an 
exact specification and only operations 
specified in the class declaration are 
guaranteed to be accepted by the com- 
piler. 

Inheritance. Consider a language that 
has some form of method lookup without 
an inheritance mechanism. Does that lan- 
guage support object-oriented program- 
ming? I think not. 

Clearly, you could do interesting things 
with the method table to adapt the objects’ 
behavior to suit conditions. However, to 
avoid chaos there must be some systematic 
way to associate methods and the data 
structures they assume for their object r e p  
resentation. To let a object’s user know 
what kind of behavior to expect, there 
would also have to be some standardway to 
express what is common to the different 
behaviors the object might adopt. Thissys- 
tematic, standard way is an inheritance 
mechanism. 

Consider a language that has an inheri- 
tance mechanism without virtual func- 
tions or methods. Does that language s u p  
port object-oriented programming? I 
think not: The shape example does not 
have agood solution in such a language. 

However, such a language would be 
more powerful than a plain data-abstrac- 
tion language. This contention is sup- 
ported by the observation that many 
Simula and C++ programs are structured 
using class hierarchies without virtual 
functions. The ability to express com- 
monality (factoring) is an extremely 
powerful tool. For example, the problems 
associated with the need to have a com- 
mon representation of all shapes could be 
solved; no union would be needed. 

However, in the absence of virtual func- 
tions, the programmer would have to re- 

sort to using type fields to determine ac- 
tual types of objects, so the problems with 
the code’s lack of modularity would re- 
main.* 

This implies that class derivation ( sub  
classing) is an important programming 
tool in its own right. While it can be used to 
support object-oriented programming, it 
has wider uses. This is particularly true if 
you associate inheri tance in object- 
oriented programming with the idea that 
a base class expresses a general concept of 
which all derived classes are specializa- 
tions. This idea captures only part of the 
expressive power of inheritance, but it is 
strongly encouraged by languages where 
every member function is virtual (or a 
method). 

Given suitable controls over what is in- 
herited,” class derivation can be a power- 
ful tool for creating new types. Given a 
class, derivation can be used to add and 
subtract features. The relation of the re- 
sulting class to its base cannot always be 
completely described in terms of speciali- 
zation; factoring is a better term. 

Derivation is another programmer’s 
tool and there is no foolproof way to pre- 
dict how it is going to be used - and it is 
too early (even after 20years ofsirnula) to 
tell which uses are simply misuses. 

Multiple inheritance. When class A is a 
base of class B, B inherits the attributes of 
A; that is, B is an A in addition to whatever 
else it  might be. Given this explanation, it 
seems obvious that it might be useful to 
have class B inherit from two base classes, 
AI and A2. This is called multiple inheri- 
tance.* 

An example of multiple inheritance are 
two library classes, the displayed class and 
the task class, that respectively represent 
objects under the control of a display 
manager and coroutines under the con- 
trol of a scheduler. A programmer could 
then create classes such as 

class my-displayed-task 
: public displayed, public task 

I; 
// my stuff 

class my-task 
: public task { // not displayed 

// my stuff 
1; 

class my-displayed 
:public displayed { / /  not a task 

t ;  
/ /  my stuff 

With single inheritance, only two of these 
three choices are open to the program- 
mer. This leads to code replication or loss 
of flexibility- and typically both. In C++, 
this example can be handled with no sig- 
nificant overhead (in time or space), com- 
pared to single inheritance, and without 
sacrificing static type checking.’ 

Ambiguities are detected at compile 
time: 

classA(public:f(); ... 1 ;  
class B public: f ( ) ;  . . . I ;  
class C : public A, public B { . . . I; 

voidgo I 
C* p; 

t 
p > f ( ) ;  / /error:  ambiguous 

In this capability, C++ differs from the o b  
ject-oriented Lisp dialects that support 
multiple inheritance. In these Lisp dia- 
lects, ambiguities are resolved by consider- 
ing the order of declarations significant, 
by considering objects of the same name 
in different base classes identical, or by 
combining methods of the same name in 
base classes into a more complex method 
of the highest class. 

In C++, you would typically resolve the 
ambiguity by adding a function: 

class C : public A, public B 1 
public: 

f (  ) 
1 
// C’s own stuff 
A::f(); 
B::f(); 

I 
... 

I 
In addition to this fairly straightforward 

concept of independent, multiple inheri- 
tance, there appears to be a need for a 
more general mechanism to express de- 
pendencies between classes in a multiple- 
inheritance lattice. In C++, the require- 
ment that a subobject be shared in a class 
object is expressed through the mecha- 
nism of a virtual base class: 

*This is the problem with Sirnula’s Inspect s ~ t e i n e m  
and the reason it does not have a counterpart in C++. 

class U‘ , , . 1; 
class Bwindow / /  window with border 
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: piihlit \ i i  tual \I 
j . . .  t :  

class .Ilivindow 
: puhlic 1 irtual \V 
I . . .  t :  

cl;t5s I%.Il\V wiiido\\ with bordrr 

: puhlic B~indow, puhlit 4lwiiidow 

1 ’ \vindowwith mriiii 

I/ allti lllellll 

I . . .  1 :  

Here, the single window siibobjcct is 
?hared bv the Rwindow and Bwindow s i b  
objects of a RMM’. The Lisp dialects use 
mrthod combinations to ease program- 
ming using such complicated class hierar- 
chies. C++ docs not. 

Encapsulation. ( :oilsider a class member 
(data or  function) that must be protected 
from unauthorized access. M’hat choices 
are I-easonahlc t o  deliniit the set of func- 
tions that inay access that member? 

The  obvious aiisver for a language 
supporting object-oriented programming 
is “all operations defined for this object,” 
o r  all inember fiinctions. A hidden impli- 
cation ofthisans~\cristhattherecannotbe 
a complete and final list of all functions 
that may access the protected member 
since you can alivays add another by deriv- 
ing a new class from the protected niern- 
her’s class and then defining a member 
function of that derived class. This ap- 
proach combines a large degree of.protec- 
tion from accidents (it’s not easy to define 
a new derived class by accident) uith the 
flexibilit! needed for t o o l  building iising 
clas hierarchies ( y o u  can grant yonrself~ 
access t o  protected member-s by deri\ing a 
class). 

L’ n for-tun at el y, the o hi ous answe I for a 
langiragc supporting data abstraction is 
different: “1,ist the functions that need 
;icccss in the class declaration.” There is 
nothing special about these functions; 
thcy need n o t  be member functions. 

X noninenit)ci- function with access to  
pi-ivate class members is called aJnmd in 
(:++. Class Complex, above, \vas defined 
using friend functions. I t  is sometimes im- 
portant that a function may be specified as 
a friend in more than one class. HaLing the 
fu l l  list of.nicnibcrs and friends available is 
a great ad~antagc when you are tr!ing to 
undcrstand the bchaiior o f  a type and 
especially when you want t o  modify i t .  

Here is an example that demonstrates 
part of the range of choices for encapsula- 
tion in C++: 

class B 1 
/ /  class members are 
/ /  default private 

int i l ;  
void fl (): 

protected: 
int i2: 
r.oidfL(); 

public: 
i n t  i3; 
void f3 (); 

friend void g(B*): //any function can bc 

1; 
//designated as a friend 

Private and protected members are not  
generally accessible: 

void 11 (B* p) 
I 

p > f l  (); // error: B::fl is privatr 
p>f2(): //error: B::f? is protected 
p > n ( ) ;  //fine: B::fl is public 

I 

Protected, but not private, members are 
accessible to members of a derived class: 

class D : public B 1 
public: 

voidg() 
I 

f l  (); / /  error: B::fl is private 
fZ(): //fine: B::E isprotected, 

// but D is derived from B 
f3(): / /f ine:  B::fl ispublic 

I 
t ;  

Friend functions have access to private 
and protected membersjust like member 
functions: 

void g(B* p) 
I 

p > f l  ( ) ;  / /  fine: B::f.l is private. 
/ /  bu tgo  isafriendofB 

p>f2(); //fine: B::n is protected, 
// birtg() isafrieiidofB 

p>t3( ) ;  //fine: B::tl is public 
I 

The importance of encapsulation issues 
increases dramatically as program sire in- 
creases, and as the number and geo- 
graphical dispersion of its users expands. 
For a detailed discussion of encapsulation 
issues, see SnydeP and Stroustrup.’ 

Implementation issues. Support for ob 
ject-oriented programming is provided 
primarily by the runtime system and the 

programming cnvii-oniiicnt. 1’;ii-t of the 
reason is that objcct+rientcd pl-ogram- 
ming builds on rhc language iinpro\v 
nients all-ead! pi-o\ided t o  support data 
abstraction, so 1-elatively fkw additions arc 
needed. 

This assume’ that an ol~jcct-oi.icnted 
language docs indeed suppor-t data ab- 

abstraction i +  oftcn deficiclir in airch Iaii- 

guages. Conversely, languages that s u p  
port dara abstraction a1.c typic;llly defi- 
citnt in their support of’ object-oriented 
programming. 

Object-oiiented programming further 
blurs the distinction between a program- 
ming langiiagt. and its en\ir-onnicnt. Bc- 
cause more powerful special- and gencl-al- 
purpose user-defined types call be de- 
fined, the! pei7ade user programs. This 
requires furthei- development of the ruii- 
time system, library Facilities, dchuggrrs, 
performance measuring, monitoring 
tools, and so on. Ideally, tticsc ai-c inte- 
grated into a unified pi-ogi.aniniing e11- 
Lironment, of which Smalltiilk is the best 
example. 

StrdctiOll. HC)l.iC\Cr, the SUrIpOrt for data 

Limits to perfection 
To claim to be general-purpose, a lan- 

guage that is designed to exploit the tcch- 
niques of data hiding, data abstraction, 
and object<iricnted programming must 
also 

run on traditional machines, 
coexist with traditional operating sy-  

teins, 
compete with traditional ~ ~ O ~ I K I I I I -  

ming tangiiagvs in runtime cfficicnc); and 
cope with every major application 

area. 
This means that facilities must be avail- 

able for effectkc nuincl-ical work (float- 
ing-point arithmetic without over-head 
that Would m i k e  For-tran attr-active), and 
n i c i n o ~  milst be accessible s o  that dcricc 
drivers @an hc written. I t  must also he 
possible t o  write calla that conform to the 
(oftcn rather strange) standards required 
for operating-sptcm intcrf‘accs. In addi- 
tion, it should be possible to call fiinctions 
written in other languages fr-om it objcc-t- 
oriented language and for functions writ- 
ten in the objcct<)ricntcd language to he 
called from a program lvrittrn i l i  another 
language. 

May 1988 19 



It  also means that an object-riented lan- 
guage cannot rely completely on mecha- 
nisms that cannot be efficiently imple- 
mented on a traditional architecture and 
still expect to be used as ageneral-purpose 
language. A very general implementation 
of method invocation can be a liability un- 
less there are alternative ivavs of request- 
ing a service. 

Similarly, garbage collection can be- 
come a performance and portability bot- 
tleneck. Most object-oriented program- 
ming languages use garbage collection to 
simplify the programmer’s task and to re- 
duce the complexity of the language and 
its compiler. However, it ought LO be 
possible to use garbage collection in non- 

Acknowledri!ments 

critical areas while retaining control of 
storage use in a r e a  where it matters. As an 
alternative, it is feasible to have a language 
without garbage collection and then prtr 
vide sufficient expressive power to enable 
the design of types that maintain their own 
storage. C++ is an example of this. 

Exception handling and concurrency 
are other potential problems. Any feature 
that is best implemented with help from a 
linker is likely to become a portability 
problem. 

The alternative to having low-level fea- 
tures in a language is to handle major a p  
plication areas using separate low-level 
languages. 

bject-oriented programming is 
programming using inheritance. 0 Data abstraction is programming 

using userdefined types. With few excep 
tions, object-riented programming can 
and ought to be a superset of data abstrar- 
tion. 

These techniques need proper lan- 
guage support to be effective. Data ab- 
straction needs support primarily in lan- 
guage  features;  object-or iented 
programming needs more support in the 
programming environment. To be con- 
sidered general-purpose, a language must 
let you use traditional hardware effec- 
tively. .:. 
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An earlier version of this article was presented to the Association 
of Sirnula Users meeting in Stockholm in August 1986. The discus- 
sions there caused many improvements in both style and content. 
Bi-ian Kernighan and Ravi Sethi made many constructive com- 
ments. Also, thanks to all who helped shape C t t .  
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