OBJECT

ORIENTED

What is Object-Oriented
Programming?

Object-oriented has
become a buzzword
that implies “good”
programming. But
when it comes to
really supporting this
paradigm, not all
languages are equal.

Bjarne Stroustrup, AT&T Bell Laboratories

ot all programming languages can
Nbe object-oriented. Yet, claims
have been made that APL, Ada,
Clu, C++, Loops, and Smalltalk are object-
oriented languages. I have heard discus-
sions of object-oriented design in C, Pas-
cal, Modula-2, and Chill. Could there
somewhere be proponents of object-
oriented programming in Fortran and
Cobol? I think there must be.
“Object-oriented” has become a high-
tech synonym for “good.” Articles in the
trade press contain arguments thatappear
to boil down to syllogisms like:

Ada is good; object-oriented is good;

therefore, Ada is object-oriented.

This article presents my view of what ob-
Jjectoriented means in the context of a
general-purpose programming language.
I present examples in C++, party to intro-

An earlier version of this article appeared in Proc. First
European Conf. on Object-Oriented Programming, Springer-
Verlag, New York, 1987, pp. 51-70.

0740-7459/88,/0500/0010/$01.00 ©1988 IEEE

duce C++ and partly because C++ is one of
the few languages that supports data ab-
straction, object-oriented programming,
and traditional programming techniques.
I do not cover issues of concurrency and
hardware supportfor specific, higher level
language constructs.

Programming paradigms
Object-oriented programming is a tech-
nique — a paradigm for writing “good”
programs for aset of problems. If the term
“object-oriented language” means any-
thing, it must mean a language that has
mechanisms that support the object-
oriented style of programming well.
There is an important distinction here:
Alanguage supportsa programming style if
it provides facilities that make it con-
venient (reasonably easy, safe, and effi-
cient) to use that style. A language does
not support a technique if it takes excep-
tional effort or skill to write such pro-
grams; in that case, the language merely

|IEEE Software

enables programmers to use the technique.
For example, vou can write structured pro-
grams in Fortran and type-secure pro-
grams in C, and you can usc data abstrac-
tion in Modula-2, but it is unnecessarily
hard to do so because those languages do
not support those techniques.

Support for a paradigm comes not only
in the obvious form of language facilities
that let you use the paradigm directly, but
also in the more subtle forms of compile-
time and runtime checks for uninten-
tional deviations from the paradigm. Type
checking, ambiguity detection, and run-
time checks are an examples of linguistic
support for paradigms. Extralinguistic
facilities such as standard libraries and
programming environments can also pro-
vide significant support for paradigms.

One language is not necessarily better
than another because it has a feature the
other does not — there are many ex-
amples to the contrary. The important
issue is not how many featurces a language
has, but that the features it does have are
sufficient to support the desired program-
ming styles in the desired application
areas. Specifically, it is important that:

¢ All features are cleanly and elegantly
integrated into the language.

® It is possible to combine features to
achieve solutions that would have other-
wise required extra, separate features.

¢ There are as few spurious and special-
purpose features as possible.

¢ Implementing a feature does not im-
pose significant overhead on programs
that do not require it.

® A user need only know about the lan-
guage subset used explicitly to write a pro-
gram.

The last two principles can be sum-
marized as “what you don’t know won't
hurt you.” If there are any doubts about
the usefulness of a feature, it is better left
out. It is much easier to add a feature to a
language than to remove or modify one

May 1988

that hasfound its way into the compileror

the literature.

Procedural. The original — and prob-
ably still the most common — program-
ming paradigm is:

Decide which procedures you want; use the

best algorithms you can find.

The focusis on procedure design — the
algorithm needed to perform the desired
computation. Languages support this par-
adigm with facilities for passing arguments
to functions and returning values from
functions. The literature about this para-
digm is filled with discussions of how to

A language does not
support a techique if
it takes exceptional
effort or skill to write
such programs.

pass arguments, how to distinguish differ-
entkinds of arguments and differentkinds
of functions (procedures, routines, mac-
ros, etc.), and so on.

Fortran is the original procedural lan-
guage; Algol-60, Algol-68, C, and Pascal are
later inventions in the same tradition.

An example of good procedural style is a
square-root function. Given an argument,
the function neatly produces a result. To
do so, it performs a well-understood math-
ematical computation.

double sqrt(double arg)
{

// the code for calculating a square root

I

void some_functon()

{
double root2 = sqrt(2);
/e

}

|
|

|
|

Procedural programming uses func-
tions to create order in a maze of algo-

rithms.

Data hiding. Over the years, the empha-
sis in the program design has shifted from
procedure design 10 data organization.
Among other things, this reflects an in-
crease in program size. Asctof related pro-
cedures and the data they manipulate is
often called a module. The programming
paradigm is:

Decide which modules you want; partition
the program so that data is hidden in
modules.

This paradigm is known as the data-hid-
ing principle. When procedures do not
need to be grouped with related data, the
procedural style suffices. In fact, the tech-
niques for designing good procedures are
still applied, now to each procedure in a
module.

The most common example of data hid-
ing is a definition of a stack module. A
good solution requires

® a user interface for the stack (for ex-
ample, the functions push() and pop()),

e that the stack representation (for ex-
ample, a vector of elements) can be
accessed only through this user interface,
and

e that the stack is initialized before its
first use.

A plausible external interface for astack
module is

// declaration of the interface of module
// stack of characters

char pop();

void push(char):

const stack_size = 100;

Assuming thisinterface is found in a file
called stack.h, the internals can be defined
like this:

#include "stack.h”

static char vstack_size]; // “static” means
// local to this
// file/module

1

staticcharxp =v; // the stack is initially

// empty
char pop()
{
// check for underflow and pop

}
void push (char ¢)

{
// check for overflow and push

}

It is quite feasible to change this stack
representation to a linked list. The user
does not have access to the representation
anyway (because v and p were declared
static — that is, local to the file or module
in which theywere declared). Such a stack
can be used like this:

#include "stack.h”
void some_function()

{
char c= pop(push(’c’));
if (c!="c’) error("impossible");

}

As originally defined, Pascal doesn’t pro-
vide satisfactory facilities for such group-
ing: The only way to hide a name from the
rest of the program is to make it local to a
procedure. This leads to strange proce-
dure nestings and overreliance on global
data.

Cfares somewhat better. Asshown in the
example, you can define a module by
grouping related function and data defini-
tions in a single source file. The program-
mer can then control which names are
seen by the rest of the program (a name
can be seen by the rest of the program un-
lessit has been declared static). So in Cyou
can achieve a degree of modularity.
However, there is no generally accepted
paradigm for using thisfacility, and relying
on static declarations is rather low-level.

One of Pascal’s successors, Modula-2,
goesabit further. It formalizes the module
concept by making it a fundamental con-
struct with well-defined module declara-
tions, explicit control of the scope of
names (import/export facilities), a mod-
ule-initialization mechanism, and a set of
generally known, accepted usage styles.

In other words, C enables the decom-
position of a program into modules, while
Modula-2 supportsit.

Data abstraction. Programming with
modules leads to the centralization of all
data of a certain type under the control of

12

a type-manager module. Ifyou wanted two
stacks, you would define a stack-manager
module with an interface like this:

// stack_id is a type; no details about

// stacks or stack_ids are known here:
class stack_id;

// make a stack and return its identifier:
stack_id create_stack (intsize);

// call when stack is no longer needed:
destroy_stack(stack_id);
void push (stack_id, char);
char pop(stack_id);

This is certainly a great improvement
over the traditional unstructured mess,
but “types” implemented this way are
clearly very different from the types built
into a language.

In most important aspects, a type
created through a module mechanism is
different from a built-in type and enjoys in-
ferior support: Each type-manager mod-
ule must define a separate mechanism for
creating variables of its type, thereisno es-
tablished norm for assigning object identi-
fiers, a variable of such a type has no name
known to the compiler or programming
environment, and such variables do not
obey the usual scope and argument-pass-
ing rules.

For example:

void f()

{
stack_idsl;
stack_id s2;

sl = create_stack(200);
// Oops: forgot to create s2

char ¢l = pop(sl,push(sl,’a’});
if (c1!="¢’) error("impossible");

char c2 = pop(s2,push(s2,’a’});
if (c2!="c’) error("impossible");

destroy(s2);
// Oops: forgot to destroy sl
!

In other words, the module concept that
supports the data-hiding paradigm ena-
bles data abstraction, but doesnotsupport
it.

Abstract dala types. Languages such as
Ada, Clu, and C++ attack this problem by
letting the user define types that behave in
(nearly) the same way as built-in types.
Such a type is often called an abstract data
type, although I prefer to call it a user-de-

fined type.* The programming paradigm
becomes:

Decide which types you want; provide a full
set of operations for each type.

When thereisnoneed formore thatone
object of a type, the data-hiding program-
ming style using modules suffices. Arith-
metic types such as rational and complex
numbers are common examples of user-
defined types:

class complex {
double re, im;
public:
complex (double r, double i) { re=r; im=i; }
// ﬂoal-)complt:x conversion:
complex (double r) { re=r;im=0; }
friend complex operator+
(complex, complex);
// binary minus:
friend complex operator—
{complex, complex);
// unary minus:
friend complex operator-(complex);
friend complex operatorx
(complex, complex);
friend complex operator/
(complex, complex);
/7
}

The declaration of the complex class
(the user-defined type) specifies therepre-
sentation ofacomplexnumberand the set
of operations on a complex number. The
representation is private, that is, reand im
are accessible only to the functions
specified in the declaration of class com-
plex. Such functions can be defined like
this:

complex operator+
(complex al, complex a2)
{
return complex
(al.re+a2.re,al.im+a2.im);

}
and used like this:

complexa=2.3;

complex b =1/a;

complex ¢ = a+bxcomplex(1,2.3);
/7

c=—(a/b)+2;

Most, but not all, modules are better ex-

*As Doug Mcllroy has said, “Those types are not “ab-
stract,’ they are as real as intand float.” Another defini-
tion of abstract data types would require amathematical
“abstract” specification of all types (both built-in and
user-defined). What is referred to as types in this article
would, given such a speciﬁcau'on, be concrete specifica-
tions of such truly abstract entities.

IEEE Software

pressed as user-defined types. When the
programmer prefers to use a module rep-
resentation, even when a proper facility
for defining types is available, he can de-
clare a type that has only a single object of
that type. Alternatively, a language might
provide a module concept in addition to
and distinct from the class concept.

Problems. A user-defined type defines a
sort of black box. Once it has been de-
fined, it does not really interact with the
rest of the program. The only way to adapt
it to new uses is to modify its definition.
This is often too inflexible.

Consider defining a type shapefor use in
agraphics system. Assume for the moment
that the system has to support circles, trian-
gles, and squares. Assume also that you
have some classes:

class point{ /... x/ |;
class color{ /* ... %/ };

You might define a shape like this:
enum kind { circle, triangle, square };

class shape {
point center;
color col;
kind k;
// representation of shape
public:
pointwhere() {return center;}
void move (point to) { center = to; draw();

void draw();
void rotate (int);
// more operations

|8

The type field. &, is used by operations
such as draw() and rotate() to determine
what shape they are dealing with (in a Pas-
cal-like language, you might use a variant
record with tag k). The function draw()
might be defined like this:

void shape::draw()
{
switch (k) {
case circle:
// draw acircle
break;
case triangle:
// draw a triangle
break;
case square:
// draw a square
}
!

This is a mess. It requires that functions

May 1988

such as draw() know about all the kinds of’
shapes there are. Therefore, the code for
any such function must by modified each
time a new shape is added to the system.

If you define a new shape, every opera-
tion on a shape must be examined and
(possibly) modified. You cannotadd anew
shape to a system unless you have access to
the source code for every operation. Be-
cause adding a new shape involves touch-
ing the code of every important operation
on shapes, it can require great skill and
may introduce bugs into the code that
handles the older shapes.

Also, your choice of how you represent
particular shapes can be severely cramped
by the requirement that at least some of
their representation fit into the typically
fixed-sized framework presented by the
definition of the general type shape.

The problem is that there is no distinc-
tion between the general properties of any
shape (ashape hasacolor, it can be drawn,
etc.) and the properties of a specific shape
(a circle is a shape that has a radius, is
drawn by a circle-drawing function, etc.).

Object-oriented programming. The
ability to express this distinction and take
advantage of it defines object-oriented
programming. A language with constructs
thatletyou express and use this distinction
supports object-oriented programming.
Other languages don't.

The Simula inheritance mechanism
providesasolution. First,you specify a class
that defines the general properties of all
shapes:

class shape {

point center;
color col;
e
public:
point where () { return center; |
void move (point) { center = to; draw():

virtual void draw();
virtual void rotate(int);
/)

)

The functions marked virtual are those
for which the calling interface can be de-
fined, but the implementation cannot be
defined except for a specific shape. (“Vir-
tual” is the Simula and C++ term for “may
be redefined later in a class derived from
this one.”) Given this definition, we can

write gencral functions to manipulate
shapes:

void rotate_all
(shapes v, int size, intangle)
// rotate all members of vector “v” of size
// “size” tangle” degrees
{
for (int1=0:1 < size; 14+)
v[i].rotate (angle);

}
To define a particular shape, vou must
sav that it is a shape and specify its particu-
lar properties:

class circle : public shape {
intradius;
public:
void draw() { /* ... %/ };
void rotate(int) {} // ves, the null
// function

b

In C++, the circle classis said to be dertved
from the shape class, and the shape classis
said to be a base of the circle class. Another
terminology calls circle a subclass and
shape a superclass.

The programming paradigm is:

Decide which classes you want; provide a
Sfull set of operations for each class; make
commonality explicit by using inheritance.

Where there is no such commonality,
data abstraction suffices. How much types
have in common so that the commonality
can be exploited using inheritance and vir-
tual functionsis the litmus test of the appli-
cability of object-oriented programming.

In some arcas, such as interactive graph-
ics, there is clearly enormous opportunity
for object-oriented programming. In
other areas, such as classical arithmetic
types and the computations based on
them, there appears to be hardly any need
for more than data abstraction.*

Finding commonality among types in a
system is not a trivial process. How much
commonality can be exploited depends
on how the system is designed. Com-
monality must be actively sought when the
system is designed, both by designing
classes specifically as building blocks for
other typesand by examining classes to see
if they have similarities that can be ex-
ploited in a common base class.

*However. more advanced mathematics may benefit
from the use of inheritance: Fields are specializations of
rings: vector spaces a special case of modules.

13

Nygaard' and Kerr? explain what object-
oriented programming is without re-
course to specific language constructs;
Cargill has written a case study in object-
oriented programming.*

Supporting data
abstraction

Programming with data abstraction is
supported with facilities both to define a
set of operations for a type and to restrict
access of objects of that type to that opera-
tion set. However, once that is done the
programmer soon finds that language re-
finements are needed to define and use
the new types conveniently.

Initializationand cleanup. When a type’s
representation is hidden, some mecha-
nism must be provided for a user to initial-
ize variables of that type. A simple solution
is to require a user to call some function to
initialize a variable before using it. For ex-
ample,

class vector {
intsz;
int« v;
public:
void init(int size); // call init to initialize
// szandv before the
// first use of a vector
[/
k
vectorv;
// don’tuse v here
v.init(10);
// usevhere

Thisis error-prone and inelegant. A better
solution isto allow the designer of a type to
provide a distinguished function to do the
initialization. Such a function makes allo-
cation and initialization of a variable a
single operation (often called instantia-
tion) instead of two operations. Suchanin-
stantiation function is often called a con-
structor.

In cases where constructing object types
isnontrivial, itis often necessary to provide
a complementary operation to clean up
objects after their last use. In C++, a
cleanup function is called a destructor.
Consider a vectortype:

class vector {
intsz; // number of elements
int«v; // pointer to integers
public:

vector(int); // constructor

14

~vector(); // destructor
int& operator[](intindex); // subscript
// operator
I

The vectorconstructor can be defined to al-
locate space like this:

vector::vector (int s)
{
if (s<=0) error("bad vector size");
sz=8;
v=newint[s]; // allocate an array
// of “s” integers

!
The vectordestructor frees storage:

vector:~vector()
{
deletev; // deallocate the memory
// pointed to by v

!

C++ does not support garbage collection.
It compensates for this by letting a type
maintain its own storage management
without user intervention. While this is a
common use for the constructor/destruc-
tor mechanism, many uses of this mecha-
nism are unrelated to storage manage-
ment.

Assignment and initialization. Control-
ling the construction and destruction of
objectsissufficient for many types, butnot
for all. Sometimes, it is also necessary to
control copy operations. Consider the vec-
tor class:

vector vl (100);

vector v2 =vl; // make a new vector v2
// initialized to vl

vl =v2; // assignv2tovl

It must be possible to define the meaning

of the initialization of v2 and its assign-

ment to v/. It should also be possible to

prohibit such copy operations; preferably

both alternatives should be available. For

example:

class vector {
intxv;
intsz;
public:
e
void operator=(vector&); // assignment
vector(vector&); // initialization
I

specifies that user-defined operations
should be used to interpret vector assign-

mentand initialization. Assignmentmight
be defined like this:

vector::operator=(vector& a)
// check size and copy elements

{
if (sz !=a.sz)
error("bad vector size for =");
for (inti=0;i<sz; i++) v[i] =av[i];

}

Since the assignment operation relies on
the old value of the vector being assigned
to, the initialization operation must be
different. For example:

vector:vector(vector& a)
// initialize a vector from another vector

{
sz=a.sz; // same size
v=newint[sz]; //allocate elementarray
// copy elements:
for (inti=0; i<sz; i++) v[i] =a.v[i];

t

In C++, a constructor X(X &) definesall in-
itialization of objects of type X with
another object of type X. In addition to ex-
plicit initialization, constructors of the
form X(X &)are used to handle arguments
passed by value and function-return
values.

In C++, assignment of an object of class
X can be prohibited by declaring the as-
signment operation private:

class X {
void operator=(X&}); // only members
// of X can
X(X&); // copyan X
public:

I

Ada does not support constructors, de-
structors, assignment overloading, or
user-defined control of argument passing
and function return. This lack of support
severely limits the class of types that can be
defined and forces the programmer back
to data-hiding techniques: The user must
design and use type-manager modules in-
stead of proper types.

Parameterized types. Why would you
want to define avector of integers anyway?
Typically,auser needsavector of elements
of some type unknown to the writer of the
type vector. Consequently the wvector type
ought to be expressed so it takes the ele-
ment type as an argument:

IEEE Software

class vector<class T> (
// vector of elements of type T
Txv;
intsz;
public:
vector(ints)
{
if (s <=0) error("bad vector size");
v=new T{sz=s]; // allocate an array
/7 of ™ T
}
T& operator(] (inti);
intsize() { return sz; |
'/
/e
b
Vectors of specific types can now be de-
fined and used:

vector<int> vl (100); // vlisavector
// of 100 integers
vector<complex>v2(200); // v2is a vector
// of 200 complex
// numbers
v2[i] = complex(vl{x]}vI[y]);

Adaand Clu support parameterized types.
Unfortunately, C++ does not; the notation
used here is still experimental. When they
are needed, parameterized classes are
faked with macros. There need not be any
runtime overheads compared with a class
where all types involved are specified
directly.

Typically, a parameterized type will have
to depend on at least some aspect of a type
parameter. For example, some of the vec-
tor operations must assume that assign-
ment is defined for objects of the parame-
ter type. How can you ensure that? One
way is to require that the designer of the
parameterized class state the dependency.
For example, “T must be a type for which =
is defined.” A better way is not to require
this— or to take aspecification of an argu-
ment type as a partial specification. A com-
piler can detectif a a missing operation has
been applied and give an error message
such as

cannotdefine
vector<non_copy>:operator(] (non_copy&):
type non_copy does not have operator=

This technique lets you define types where
the dependency on attributes of a parame-
ter type is handled at the level of the in-
dividual operation of the type. For ex-
ample, you might define a vector with a
sort operation. The sort operation might
use <, ==, and = on objects of the parame-
ter type. It would still be possible to define

May 1988

vectors of a type for which < was not de-
fined, as long as the vector-sorting opera-
tion was not actually invoked.

A problem with parameterized types is
thateach instantiation creates an indepen-
dent type. For example, the type vec-
tor<char> is unrelated to the type vec-
tor<complex>. 1deally you would like to be
able to express and use the commonality
of types generated from the same parame-
terized type. For example, both vec
tor<char> and vector<complex> have a size ()
function that is independent of the pa-
rameter type. Itis possible, but not easy, to
deduce this from the definition of class
vector and then let size () be applied toany
vector. An interpreted language or a lan-
guage that supports both parameterized
types and inheritance has an advantage
here.

Exception handling. As programs grow,
and especially when libraries are used ex-
tensively, standards for handlingerrors (or
“exceptional circumstances”) become im-
portant.

Ada, Algol-68, and Clu each support a
standard way to handle exceptions. Unfor-
tunately, C++ does not. When necessary,
exceptions are faked using pointers to
functions, exception objects, error states,
and the C library’s signal and longjmp
facilities. This is not satisfactory because it
fails to provide even a standard framework
for error handling.

Consider the vector example again.
What should be done when an out-of-
range index value is passed to the subscript
operator? The designer of the vector class
should be able to provide a default be-
havior for this:

class vector {

exceptvector_range {
// define an exception called
// vector_range and specify default
// code for handling it
error("global: vector range error");
exit(99);

}

}

Instead of calling an error function, vec-
tor::operator(]() can invoke the exception-
handling code:

int& vector::operator[] (inti)

{

if (0<i Il sz<=1) raise vector_range;
return v[il;

!

This will cause the call stack to be un-
raveled untilan exception handler for vee-
tor_rangeis found and executed.

An exception handler may be defined

for a specific block:

void () {
vector v(10):

try | // crrors here are handled
// by the local exception
// handler defined below
Y7

inti=g();//g mighl Cause a range error
// using some vector

v[i] =7, // potentialrange error

!

except {

vectorivector_range:

error{"f(): vector range error”);
return;

// errors here are handled by the
// global exception handler
// defined in vector

inti=g(); //g might cause a range
// error using some vector
v[i]=T7; // potental range error

}

There are many ways to define exceptions
and the behavior of exception handlers.
The facility sketched here resembles the
ones found in Modula-2+. This style of ex-
ception handling can be implemented so
that code is not executed unless an excep-
tion is raised (except possibly for some in-
itialization code). It can also be ported
across most implementations by using
seymp() and longjmp() (see the Clibrary
manual for your system).

Could exceptions, as defined above, be
completely faked in a language such as
C++? Unfortunately, no. The snag is that
when an exception occurs, the runtime
stack must be unraveled up to a point
where an exception handler is defined. To
do this properly in C++ involves invoking
destructors defined in the scopes in-
volved. This is not done by a Clongjmp()
and cannot in general be done by the user.

Coercions. User-defined coercions,
such as the one from floating-point num-
bers to complex numbers implied by the
constructor complex(double), have proven
unexpectedly useful in C++. Such coer-
cions can be applied explicitly or the pro-

15

grammer can rely on the compiler to add
them implicitly where necessary and un-
ambiguous:

complex a = complex(1);
complexb=1; // implicit:
// 1->complex(1)
a=b+complex(2);
a=b+2; // implicit:
// 2—>complex(2)

Coercions were introduced into C++ be-
cause mixed-mode arithmetic is the norm
in languages for numerical work and be-
cause most user-defined types used for cal-
culation (of matrices, character strings,
and machine addresses) have natural
mappings to and from other types.

One use of coercions has proven espe-
cially useful in organizing programs:

complexa=2;
complex b=2a+2; //interpreted as
//operator+
//(a,complex(2))
//interpreted as
//operator+

//(complex(2),a)

b=2+a;

Only one function is needed to interpret +
operations, and the two operands are
handled identically by the type system.
Furthermore, class complex is written
without any need to modify the concept of
integers to enable the smooth and natural
integration of the two concepts.

This is in contrast to a “pure” object-
oriented system, where the operations
would be interpreted like this:

a+2; // a.operator+(2)
2+a; // 2.operator+(a)

making it necessary to modify the integer
class to make 2+alegal.

You should avoid modifying existing
code asmuch as possible when adding new
facilities to a system. Typically, object-
oriented programming offers superior
facilities for adding to a system without
modifying existing code. In this case, how-
ever, data-abstraction facilities provide a
better solution.

Iterators. A language that supports data
abstraction must provide a way to define
control structures.* In particular, users
need amechanism to define loopsover the
elements contained in an object of some
user-defined type, without forcing them to
depend on implementation details of the

16

user-defined type. Given a sufficiently
powerful mechanism for defining new
types and the ability to overload operators,
this can be handled without a separate
mechanism for defining control struc-
tures.

For a vector, defining an iterator is not
necessary because an ordering is available
to a user through the indices. I'll define
one anyway, to demonstrate the tech-
nique,

There are several iterator styles. My
favorite relies on overloading the function
application operator ():*

class vector_iterator {
vector& v;
inti;
public:
vector_iterator (vector& r) {i=0;v=r;}
intoperator() ()
{return icv.size () ? v.elem (i++) : 0;}

b

A wvector_iterator type can now be declared
and used for a vector:

vector v(sz);

vector_iterator next(v);

inti;

while (i=next()) print(i);

More than one iterator can be active for a
single object at one time, and a type may
have several different iterator types de-
fined for it so different kinds of iteration
can be performed. An iterator is a rather
simple control structure. More general
mechanisms can also be defined. For ex-
ample, the C++ standard library provides a
coroutine class.’

For many container types, such as vector,
you can avoid introducing a separate iter-
ator type by defining an iteration mecha-
nism as part of the type itself. A vector type
might be defined to have a “current ele-
ment”™

class vector {
int*v;
intsz;
intcurrent;
public:
/7.
intnext()
{return (current++<sz) ? v[current] : 0; }
intprev()
{ return (O<—current) ? v[current] : 0; }

*This style also relies on the existence of a distinct value
to represent end of iteration, Often, in particular for
C++ pointer types, 0 can be used.

Then the iteration can be performed like
this:

vector v(sz);

mnty;

while (i=v.next()) print(i);

This solution is not as general as the itera-
tor solution, but it avoids overhead in the
important special case where only one
kind of iteration is needed and where only
one iteration at a time is needed for a vec-
tor.

If necessary, you can apply a more
general solution in addition to this simple
one. The simple solution requires more
foresight from the designer of the con-
tainer class than does the iterator solution.
The iterator-type technique can also be
used to define iterators that can be bound
to several different container types, thus
providing a mechanism for iterating over
different container types with asingle iter-
ator type.

Implementation issues. Support for
data abstraction is primarily provided in
the form of language features imple-
mented by a compiler. However, parame-
terized types are best implemented with
support from a linker with some knowl-
edge of the language semantics, and ex-
ception handling requires support from
the runtime environment. Both can be im-
plemented to meet the strictest criteria for
both compile-time speed and efficiency
without compromising generality or pro-
grammer convenience.

As the power to define types increases,
programs will depend increasingly on
types from libraries (and not just those de-
scribed in the language manual). This nat-
urally puts a greater demand on facilities
toexpresswhatisinserted into or retrieved
from a library, for finding out what a li-
brary contains, for determining what parts
of alibrary are actually used by a program,
and so on.

For acompiled language, facilities to cal-
culate the minimal compilation necessary
after achange are important. Itis essential
that the linker/loader can bring a pro-
gram into memory for execution without
also bringing in alot of related but unused
code. In particular, a library/linker/load-
er system that includes the code for every
operation on a type in the executable pro-

|IEEE Software

gram just because the programmer used
ONe or two ()pCI'Ll[i(}I]S on the [/Vp(’ 1sworse
than useless.

Supporting
object-oriented

programming

The basic support functions a program-
mer needs to write object-oriented pro-
grams arc a class mechanism with inheri-
tance and a mechanism that lets calls of
member functions depend on the actual
object type (when the actual wype is un-
known at compile time).

The design of the member-function call-
ing mechanism is critical. In addition,
facilities that support data-abstraction
techniques are important because the ar-
guments for dataabstraction and foritsre-
finements to use types elegantly are
equally valid where support for object-
oriented programming is available.

The success of both techniques hinges
on the design of typesand on the ease, flex-
ibility, and efficiency of such types. Object-
oriented programming simply lets user-
defined types be far more flexible and
general than the ones designed using only
data-abstraction techniques.

Calling mechanisms. The key language
facility to support object-oriented pro-
gramming is the mechanism by which a
member function is invoked for an object.
For example, given pointer p, how is a call
p—f(arg) handled? There is a range of
choices.

In languages such as C++ and Simula,
where static type checking is used exten-
sively, the type system can select between
different calling mechanisms. In Ct++,
there are two alternatives:

1. Normal function call: The member
function to call is determined at compile
time (through a lookup in the compiler’s
symbol tables) and called with the stan-
dard function-call mechanism, with an ar-
gument added to identify the object for
which the function is called. When the
standard function call is not efficient
enough, the programmer can declare a
function to be in-line and the compiler will
try to expand its body in-line. This lets you
achieve the efficiency of a macro expan-
sion without compromising the standard

May 1988

function semantics. This optimization is
equally valuable as a support for data ab-
straction.

2. Virtual function call: The function
called depends on the object type, which
usually cannot be determined until run-

time. Typically, the pointer p will be of

some base class Band the object will be an
object of some derived class D. The call
mechanism must look into the object and
find some information placed there by the
compiler to determine which function fis
to be called. Once that function, say D:f is
found, it is called with the mechanism de-
scribed above. At compile time, the name

fis converted into an index to a table con-

taining pointers to functions. This virtual-
call mechanism can essentially be made as
efficientas the normalfunctioncallmech-
anism. In the standard C++ imple-
mentation, only five additional memory
references are used. In cases where the ac-
tual type can be deduced at compile time,
even thisoverhead iseliminatedand in-lin-
ing can be used. Such cases are quite com-
mon and important.

In languages with weak static type check-
ing, a third, more elaborate alternative
must be used. In a language like Smalltalk,
alist of the names of all member functions
(called methods) of a class are stored so
they can be found at runtime:

3. Methodinvocation: The appropriate
table of method names is first found by ex-
amining the object that p points to. In this
table (orsetoftables), the string fis looked
up to see if the objecthasan f{). lf an f{) is
found, it is called; otherwise, some error
handling takes place. This lookup differs
from the lookup done atcompile time ina
statically checked language because the
method invocation uses amethod table for
the actual object.

A method invocation is inefficient com-
pared with a virtual function call, but it is
more flexible. Since static type checking of
arguments typically cannot be done for a
method invocation, the use of methods
must be supported by dynamic type check-
ing.

Type checking. The shape example car-
lier showed the power of virtual functions.
What else does a method-invocation
mechanism do for you? It lets you invoke
any method for any object.

This ability lets the designer of ageneral-
purpose library push the responsibility tor
handling tvpes onto the user. Naturally
thissimplifies library design. For example:
ssume class anv has a
Zmember next

class stack {

anvs;
void])ll\‘}l(;lll\:&- P
{
p—>nest =i
Ve pr
}
anys pop()
{
if (v == 0) return ervor_oby:
an Vi
[ERCSITONE
return v
}
I

It becomes the user's responsibility to
avoid type mismatches like this:

stack<anys> s;
cs.push (new SaahY00) :
cs.push(new Saah37B):
planes p = (planes)cs.pop():
p>takeotf(ip = (planes) cs.pop():
p—>takeotf():
// Qops! Runtime error:
/ /A Saab 900 1s a car.
/7 A car does not have a takeoff method.
An attempt to use a carasa plane will be
detected by the message handler and an
appropriate error handler will be called.
However, that is only a consolation when
the user is also the programmer. The ab-
sence of static type checking makes it diffi-
cult to guarantee that errors of this class
are notpresentinsystems delivered to end
users. Naturally, a language designed with
methods and without static tvpes can ex-
press this example with fewer keystrokes.
The combination of parameterized
classes and virtual functions approaches
the flexibility, case of design, and case of
use that characterizes libraries designed
with method lookup, without relaxing
static type checking or incurring measur-
able runtime overhead (in time or space).
For example:
stack<plancs> cs;
¢s.push (new Saah900)
//Compile time error: type mismatch:
//cars passed, planes expected
cs.push (new Saab37B):
planex p =cs.pop(}:
p—>takeoff(): //fine: a Saab 378
//is aplane
p=cs.pop():
p—>takeoft():

17

The use of static type checking and virtual
function calls leads to a somewhat differ-
ent style of programming than does dy-
namic type checking and method invoca-
tion. For example, a Simula or C++ class
specifies a fixed interface to aset of objects
(of any derived class), while a Smalltalk
class specifies an initial set of operations
for objects (of any subclass). In other
words, a Smalltalk class is a minimal speci-
fication and the user is free to try opera-
tions not specified, while a C++ class is an
exact specification and only operations
specified in the class deciaration are
guaranteed to be accepted by the com-
piler.

Inheritance. Consider a language that
has some form of method lookup without
an inheritance mechanism. Does that lan-
guage support object-oriented program-
ming? I think not.

Clearly, you could do interesting things
with the method table to adapt the objects’
behavior to suit conditions. However, to
avoid chaos there must be some systematic
way to associate methods and the data
structures theyassume for their objectrep-
resentation. To let a object’s user know
what kind of behavior to expect, there
would also have to be some standard way to
express what is common to the different
behaviors the object mightadopt. This sys-
tematic, standard way is an inheritance
mechanism.

Consider a language that has an inheri-
tance mechanism without virtual func-
tions or methods. Does that language sup-
port object-oriented programming? I
think not: The shape example does not
have a good solution in such a language.

However, such a language would be
more powerful than a plain data-abstrac-
tion language. This contention is sup-
ported by the observation that many
Simula and C++ programs are structured
using class hierarchies without virtual
functions. The ability to express com-
monality (factoring) is an extremely
powerful tool. For example, the problems
associated with the need to have a com-
mon representation of all shapes could be
solved; no union would be needed.

However, in the absence of virtual func-
tions, the programmer would have to re-

18

sort to using type fields to determine ac-
tual types of objects, so the problems with
the code’s lack of modularity would re-
main.*

This implies that class derivation (sub-
classing) is an important programming
toolin its own right. While it can be used to
support objectoriented programming, it
has wider uses. This is particularly true if
you associate inheritance in object-
oriented programming with the idea that
a base class expresses a general concept of
which all derived classes are specializa-
tions. This idea captures only part of the
expressive power of inheritance, but it is
strongly encouraged by languages where
every member function is virtual (or a
method).

Given suitable controls over what is in-
herited,*’ class derivation can be a power-
ful tool for creating new types. Given a
class, derivation can be used to add and
subtract features. The relation of the re-
sulting class to its base cannot always be
completely described in terms of speciali-
zation; factoring is a better term.

Derivation is another programmer’s
tool and there is no foolproof way to pre-
dict how it is going to be used — and it is
too early (even after 20 years of Simula) to
tell which uses are simply misuses.

Multiple inheritance. When class A is a
base of class B, Binherits the attributes of
A; that is, Bisan A in addition to whatever
else it might be. Given this explanation, it
seems obvious that it might be useful to
have class Binherit from two base classes,
Al and A2. This is called multiple inheri-
tance.*

An example of multiple inheritance are
two library classes, the displayed class and
the task class, that respectively represent
objects under the control of a display
manager and coroutines under the con-
trol of a scheduler. A programmer could
then create classes such as

class my_displayed_task

: public displayed, public task {
// my stuff

h

class my_task
: public task { // not displayed

*This is the problem with Simula's Inspect statement
and the reason it does not have a counterpartin C++.

// my stuff
k

class my_displayed

: public displayed { // not a task
// my stuff

h

With single inheritance, only two of these
three choices are open to the program-
mer. This leads to code replication or loss
of flexibility — and typically both. In C++,
this example can be handled with no sig-
nificant overhead (in time or space), com-
pared to single inheritance, and without
sacrificing static type checking.’

Ambiguities are detected at compile
time:

class A { public: f(); ... };

class B { public: f(); ... };

class C: public A, public B{ ... };

voidg() {

Cxp;

p—>f(); // error: ambiguous
}

In this capability, C++ differs from the ob-
ject-oriented Lisp dialects that support
multiple inheritance. In these Lisp dia-
lects, ambiguities are resolved by consider-
ing the order of declarations significant,
by considering objects of the same name
in different base classes identical, or by
combining methods of the same name in
base classes into a more complex method
of the highest class.
In C++, you would typically resolve the
ambiguity by adding a function:
class C: public A, public B{
public:
£()
{
// C's own stuff
Axf();
B:f();
|

|

In addition to this fairly straightforward
concept of independent, multiple inheri-
tance, there appears to be a need for a
more general mechanism to express de-
pendencies between classes in a multiple-
inheritance lattice. In C++, the require-
ment that a subobject be shared in a class
object is expressed through the mecha-
nism of a virtual base class:

classW{...};
class Bwindow // window with border

IEEE Software

:public virtual W

{...k

class Mwindow // window with menu
: public virtual W

[k

class BMW // window with border

// and menu
: public Bwindow, public Mwindow

{...h

Here, the single window subobject is
shared by the Bwindow and Bwindow sub-
objects of a BMW. The Lisp dialects use
method combinations to ease program-
ming using such complicated class hierar-
chies. C++ does not.

Encapsulation. Consideraclassmember
(data or function) that must be protected
from unauthorized access. What choices
are reasonable to delimit the set of func-
tions that may access that member?

The obvious answer for a language
supporting object-oriented programming
is “all operations defined for this object,”
or all member functions. A hidden impli-
cation of thisanswer is that there cannotbe
a complete and final list of all functions
that may access the protected member
since you can always add another by deriv-
ing a new class from the protected mem-
ber's class and then defining a member
function of that derived class. This ap-
proach combines a large degree of protec-
tion from accidents (it’s not easy to define
a new derived class by accident) with the
flexibility needed for tool building using
class hierarchies (you can grant vourself
access (o protected members by deriving a
class).

Unfortunately, the obvious answer for a
language supporting data abstraction is
different: “List the functions that need
access in the class declaration.” There is
nothing special about these functions;
thev need not be member functions.

A nonmember function with access to
private class members is called a friend in
C++. Class Complex, above, was defined
using friend functions. It is sometimes im-
portant that a function may be specified as
afriendin more than one class. Having the
tull list of members and friends available is
a great advantage when you are trying to
understand the behavior of a type and
especially when you want to modify it.

May 1988

Here is an example that demonstrates
part of the range of choices for encapsula-
tion in C++:

class B {
// class members are
// default private
intil;
void f1();
protected:
inti2;
void £2();
public:
inti3;
void f3();
friend void g(B#); //any function can be
//designated as a friend
I

Private and protected members are not
generally accessible:

void h(Bx p)

{
p—>f1(); // error: Bufl is private
p—>f2(); // error: B:f2 is protected
p—>f3(); // fine: Bu:fl is public

}

Protected, but not private, members are
accessible to members of a derived class:

class D : public B{
public:
void g()
{
f1(); // error: B:fl is private
f2(); // fine: B:f2 is protected,
// but Dis derived from B
f3(); // fine: Bzl is public
}
b

Friend functions have access to private
and protected members just like member
functions:

void g(B+ p)
{

p—>f1(); // fine: B:fl is private,
// butg() isa friend of B
// fine: B:f2 is protected,
// butg() isa friend of B
// fine: B::f1 is public

p—>120);

p—>130);
!

The importance of encapsulation issues
increases dramatically as program size in-
creases, and as the number and geo-
graphical dispersion of its users expands.
For a detailed discussion of encapsulation
issues, see Snyder® and Stroustrup.’

Implementation issues. Support for ob-
ject-oriented programming is provided
primarily by the runtime system and the

programming environment. Part of the
reason is that object-oricnted program-
ming builds on the language improve-
ments already provided to support data
abstraction, so relatively few additdons are
needed.

This assumes that an object-oriented
language does indeed support data ab-
straction. However, the support for data
abstraction is often deticient in such lan-
guages. Conversely, languages that sup-
port data abstraction are typically defi-
cient in their support of object-oriented
programming.

Object-oriented programming further
blurs the distinction between a program-
ming language and its environment. Be-
cause more powerful special-and general-
purpose user-defined types can be de-
fined, they pervade user programs. This
requires further development of the run-
time system, library facilities, debuggers,
performance measuring, monitoring
tools, and so on. Ideally, these are inte-
grated into a unified programming en-
vironment, of which Smalltalk is the best
example.

Limits to perfection

To claim to be general-purpose, a lan-
guage that is designed to exploit the tech-
niques of data hiding, data abstraction,
and objectoriented programming must
also

e run on traditional machines,

e coexist with traditional operating sys-
tems,

® compete with traditional program-
ming languages in runtime cfficiency, and

® cope with every major application
area.

This means that facilities must be avail-
able for effective numerical work (float-
ing-point arithmetic without overhead
that would make Fortran auractive), and
memory must be accessible so that device
drivers can be written. It must also be
possible to write calls that conform to the
(often rather strange) standards required
for operating-system interfaces. In addi-
tion, it should be possible to call functions
written in other languages from a object-
oriented language and tor functions writ-
ten in the object-oriented language to be
called from a program written in another
language.

19

Iralso means that an object-oriented lan-
guage cannot rely completely on mecha-
nisms that cannot be efficiently imple-
mented on a traditional architecture and
still expect to be used as ageneral-purpose
language. A very general implementation
of method invocation can be a liability un-
less there are alternative ways of request-
ing a service.

Similarly, garbage collection can be-
come a performance and portability bot-
tleneck. Most object-oriented program-
ming languages use garbage collection to
simplify the programmer’s task and to re-
duce the complexity of the language and

critical areas while retaining control of
storage use in areas where it matters. Asan
alternative, it is feasible to have alanguage
without garbage collection and then pro-
vide sufficient expressive power to enable
the design of types that maintain their own
storage. C++is an example of this.

Exception handling and concurrency
are other potential problems. Any feature
that is best implemented with help from a
linker is likely to become a portability
problem.

The alternative to having low-level fea-
tures in a language is to handle major ap-

bject-oriented programming is

programming using inheritance.

Data abstraction is programming
using user-defined types. With few excep-
tions, object-oriented programming can
and ought to be a superset of data abstrac-
tion.

These techniques need proper lan-
guage support to be effective. Data ab-
straction needs support primarily in lan-
guage features; object-oriented
programming needs more support in the
programming environment. To be con-
sidered general-purpose, a language must

its compiler. However, it ought to be

possible to use garbage collection in non- languages.

Acknowledgments

An earlier version of this article was presented to the Association
of Simula Users meeting in Stockholm in August 1986. The discus-
sions there caused many improvements in both style and content.
Brian Kernighan and Ravi Sethi made many constructive com-
ments. Also, thanks to all who helped shape C++.

AN OUTSTANDING SEMINAR BY
THE INTERNATIONALLY RECOGNIZED AUTHORITY ON...

Software Cost Estimation Using

COCOMO

(COnstructive COst MOdel)

Special Feature: A Full Description of the
Recently Developed Ada COCOMO Model

* COCOMO vs. Other Cost Models/Techniques

® Basic, Intermediate, Detailed COCOMO—
Features/Applications

® Tailoring COCOMO

* COCOMO Extensions—Incremental Development,
Acquisition management

PRESENTED BY:

DR. BARRY W. BOEHM

LOS ANGELES
June 9-10, 1988

WASHINGTON, DC
June 13-14, 1988

For Information Call: {213) 534-4871

Reader Service Number 4

plication areas using separate low-level

let you use traditional hardware effec-

tively. -

References

1. K Nygaard, “Basic Concepts in Object-Oriented Programming,”
SIGPlan Notices, Oct. 1986, pp. 128-132.

2. R Kerr, “Object-Based Programming: A Foundation for Reliable
Software,” Proc. I4th Simulu Users' Conf., Simula Information, Oslo,
Norway, 1986, pp. 159-165; a short version is “A Materialistic View
of the Software ‘Engineering’ Analogy, SIGPlan Notices, March
1987, pp 123-125.

3. T. Cargill, “IPL: A Case Study in Object-Oriented Programming,”
SIGPlan Notices, Nov. 1986, pp. 350-360.

4. B. Liskov et al., “Abstraction Mechanisms in Clu,” Comm. ACM,
Aug. 1977, pp. 564-576.

5. J. Shopiro, “Extending the C++ Task System for Real-Time Appli-
cations,” Proc. Usenix C++ Workshop, Usenix, Santa Monica, Calif.,
1987, pp. 77-94.

6. A. Snyder, “Encapsulation and Inheritance in Object-Oriented
Programming Languages,” SIGPlan Notices, Nov. 1986, pp. 3845.

7. B. Swoustrup, The C++ Programming Language, Addison-Wesley,
Reading, Mass., 1986.

8. D. Weinreb and D. Moon, Lisp Machine Manual, Symbolics, Cam-
bridge, Mass., 1981.

9. B. Stroustrup, “Multiple Inheritance for C++,” Proc. Spring
European Unix Users Group Conf., EEUG, London, 1987.

Bjarne Stroustrup is the designer and original implementer of C++.
His research interests include distributed systems, operating sys-
tems, simulation, programming methodology, and programming
languages.

Stroustrup received an MS in mathematics and computer science
from the University of Aarhus and a PhD in computer science from
Cambridge University. He is a distinguisehd member of the Com-
puter Science Research Center and isa member of IEEE and ACM.

Address questions about this article to the author at AT&T Bell
Laboratories, Rm. 2C-324, 600 Mountain Ave., Murray Hill, N |
07974.

IEEE Software

