
CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 1

History of
Programming

Languages

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 2

History
• Early History : The first programmers
• 1940s: Von Neumann and Zuse
• 1950s: The First Programming Language
• 1960s: Explosion in Programming languages
• 1970s: Simplicity, Abstraction, Study
• 1980s: Object-oriented, Logic programming
• 1990s: Internet, Java, C++, C#
• 2000s: Scripting, Web, …
• 2010s: Parallel computing, concurency

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 3

Early History: First Programmers
• Jacquard loom of early 1800s

– Translated card patterns into cloth designs
• Charles Babbage’s analytical engine

(1830s and 40s)
Programs were cards with data and operations.

Steam powered!

• Ada Lovelace – first programmer
“The engine can arrange and combine its

numerical quantities exactly as if they
were letters or any other general
symbols; And in fact might bring out its
results in algebraic notation, were
provision made.”

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 4

Konrad Zuse and Plankalkul
Konrad Zuse began work on
Plankalkul (plan calculus), the first
algorithmic programming
language, with an aim of creating the
theoretical preconditions for the
formulation of problems of a general
nature.
Seven years earlier, Zuse had devel-
oped and built the world's first
binary digital computer, the Z1. He
completed the first fully functional
program-controlled electromechan-
ical digital computer, the Z3, in
1941.
Only the Z4 – the most sophisticated
of his creations -- survived World
War II.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 5

The 1940s: Von Neumann and Zuse
• Konrad Zuse (Plankalkul)

–  in Germany - in isolation because of the war
– defined Plankalkul (program calculus) circa 1945 but

never implemented it.
– Wrote algorithms in the language, including a program

to play chess.
– His work finally published in 1972.
–  Included some advanced data type features such as

» Floating point, used two’s complement and hidden
bits

» Arrays
» records (that could be nested)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 6

Plankalkul notation

 A(7) := 5 * B(6)

 | 5 * B => A
 V | 6 7 (subscripts)
 S | 1.n 1.n (data types)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 7

The 1940s: Von Neumann and Zuse
Von Neumann
led a team that
built computers
with stored
programs and a
central pro-
cessor
ENIAC was
programmed
with patch
cords

Von Neuman with ENIAC

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 8

•  Initial computers were programmed in raw
machine codes.

• These were entirely numeric.
• What was wrong with using machine code?

Everything!
• Poor readability
• Poor modifiability
• Expression coding was tedious
•  Inherit deficiencies of hardware, e.g., no

indexing or floating point numbers

Machine Codes (40’s)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 9

The 1950s: The First
Programming Language

• Pseudocodes: interpreters for assembly language
• Fortran: the first higher level programming

language
• COBOL: the first business oriented language
• Algol: one of the most influential programming

languages ever designed
• LISP: the first language outside the von Neumann

model
• APL: A Programming Language

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 10

• Short Code or SHORTCODE - John Mauchly, 1949.
• Pseudocode interpreter for math problems, on Eckert

and Mauchly’s BINAC and later on UNIVAC I and II.
• Possibly the first attempt at a higher level language.
• Expressions were coded, left to right, e.g.:

X0 = sqrt(abs(Y0))
00 X0 03 20 06 Y0

• Some operations:
01 – 06 abs 1n (n+2)nd power
02) 07 + 2n (n+2)nd root
03 = 08 pause 4n if <= n
04 / 09 (58 print & tab

Pseudocodes (1949)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 11

More Pseudocodes
Speedcoding; 1953-4
•  A pseudocode interpreter for math on IBM 701, IBM 650.
•  Developed by John Backus
•  Pseudo ops for arithmetic and math functions
•  Conditional and unconditional branching
•  Autoincrement registers for array access
•  Slow but still dominated by slowness of s/w math
•  Interpreter left only 700 words left for user program
Laning and Zierler System - 1953
•  Implemented on the MIT Whirlwind computer
•  First "algebraic" compiler system
•  Subscripted variables, function calls, expression translation
•  Never ported to any other machine

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 12

Fortran (1954-57)
• FORmula TRANslator
• Developed at IBM under the

guidance of John Backus
primarily for scientific,
computational programming

• Dramatically changed the
way computers used

• Has continued to evolve, adding new features and
concepts.
–  FORTRAN IV, FORTRAN 77, FORTRAN 2008 (!)

• Always among the most efficient compilers, producing fast
code

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 13

Fortran 77 Examples
C Hello World in Fortran 77

C (lines must be 6 characters indented)

 PROGRAM HELLOW

 WRITE(UNIT=*, FMT=*) 'Hello World'

 END

 PROGRAM SQUARE

 DO 15, I = 1,10

 WRITE(*,*) I*I

 15 CONTINUE

 END

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 14

FORTRAN 0 – 1954 (not implemented)
FORTRAN I - 1957
Designed for the new IBM 704, which had index

registers and floating point hardware

Environment of development:
Computers were small and unreliable
Applications were scientific
No programming methodology or tools
Machine efficiency was most important

Impact of environment on design
•  No need for dynamic storage
•  Need good array handling and counting loops
•  No string handling, decimal arithmetic, or

powerful input/output (commercial stuff)

Fortran 0 and 1

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 15

•  Names could have up to six characters
•  Post-test counting loop (DO I=1, 100)
•  Formatted I/O
•  User-defined subprograms
•  Three-way selection statement (arithmetic IF with GOTO)

IF (ICOUNT-1) 100 200 300
•  Implicit data typing statements

variables beginning with i, j, k, l, m or n were integers,
all else floating point

•  No separate compilation
•  Programs larger than 400 lines rarely compiled correctly,

mainly due to poor reliability of the 704
•  Code was very fast
•  Quickly became widely used

Fortran I Features

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 16

Fortran II, IV and 77
FORTRAN II - 1958
•  Independent compilation

•  Fix the bugs

FORTRAN IV - 1960-62
•  Explicit type declarations
•  Logical selection statement
•  Subprogram names could be parameters
•  ANSI standard in 1966

FORTRAN 77 - 1978
•  Character string handling
•  Logical loop control statement
•  IF-THEN-ELSE statement

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 17

Added many features of more modern
programming languages, including

•  Pointers
•  Recursion
•  CASE statement
•  Parameter type checking
•  A collection of array operations, DOTPRODUCT,

MATMUL, TRANSPOSE, etc
•  dynamic allocations and deallocation of arrays
•  a form of records (called derived types)

Fortran 90 (1990)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 18

COBOL
•  COmmon Business Oriented Language
•  Principal mentor: (RADM Dr.)

Grace Murray Hopper (1906-1992)
•  Based on FLOW-MATIC which had such

features as:
•  Names up to 12 characters, with

embedded hyphens
•  English names for arithmetic operators
•  Data and code were completely separate
•  Verbs were first word in every statement

•  CODASYL committee (Conference on Data Systems
Languages) developed a programming language by the
name of COBOL

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 19

First CODASYL Design Meeting - May 1959

Design goals:

•  Must look like simple English

•  Must be easy to use, even if that means it will be less
powerful

•  Must broaden the base of computer users

•  Must not be biased by current compiler problems

Design committee were all from computer manufacturers
and DoD branches

Design Problems: arithmetic expressions? subscripts?
Fights among manufacturers

COBOL

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 20

COBOL
Contributions:
 - First macro facility in a high-level language
 - Hierarchical data structures (records)
 - Nested selection statements
 - Long names (up to 30 characters), with hyphens
 - Data Division
Comments:

• First language required by DoD; would have
failed without DoD

• Still the most widely used business applications
language

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 21

Cobol Example
IDENTIFICATION DIVISION.

PROGRAM-ID. HelloWorld.

AUTHOR. Fabritius.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

PROCEDURE DIVISION.

DISPLAY "Hello World".

STOP RUN.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 22

•  Beginner's All purpose Symbolic Instruction Code

•  Designed by Kemeny & Kurtz at Dartmouth for the GE
225 with the goals:

•  Easy to learn and use for non-science students and as
a path to Fortran and Algol

•  Must be “pleasant and friendly”
•  Fast turnaround for homework
•  Free and private access
•  User time is more important than computer time

•  Well suited for implementation on first PCs (e.g., Gates
and Allen’s 4K Basic interpreter for the MITS Altair
personal computer (circa 1975)

•  Current popular dialects: Visual BASIC

BASIC (1964)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 23

PRINT "Hello World"

FOR I=1 TO 10

 PRINT I*I;

NEXT I

BASIC Examples

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 24

LISP (1959)
•  LISt Processing language (Designed at MIT by McCarthy)
•  AI research needed a language that:

•  Process data in lists (rather than arrays)
•  Symbolic computation (rather than numeric)

•  One universal, recursive data type: the s-expression
•  An s-expression is either an atom or a list of zero or more

s-expressions
•  Syntax is based on the lambda calculus
•  Pioneered functional programming

•  No need for variables or assignment
•  Control via recursion and conditional expressions

•  Status
•  Still the dominant language for AI
•  COMMON LISP and Scheme are contemporary dialects
•  ML, Miranda, and Haskell are related languages

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 25

LISP Examples
(print "Hello World")

(defun fact (n)

 (if (zerop n)

 1

 (* n (fact (1- n)))))

(format t “factorial of 6 is: ~A~%" (fact 6))

(defun print-squares (upto)

 (loop for i from 1 to upto

 do (format t "~A^2 = ~A~%" i (* i i))))

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 26

Environment of development:

1.  FORTRAN had (barely) arrived for IBM 70x

2.  Many other languages were being developed, all for
specific machines

3.  No portable language; all were machine dependent

4.  No universal language for communicating
algorithms

ACM and GAMM met for four days for design
 - Goals of the language:
 1. Close to mathematical notation
 2. Good for describing algorithms
 3. Must be translatable to machine code

Algol

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 27

Algol 60 Examples
'begin' --Hello World in Algol 60

 outstring(2, 'Hello World');

'end'

'begin' 'comment' Squares from 1 to 10

 'integer' I;

 'for' i := 1 'step' 1 'until' 10 'do'

 'begin'

 outinteger(2,i*i);

 'end' --for

'end' --program

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 28

Algol 58 Features
•  Concept of type was formalized
•  Names could have any length
•  Arrays could have any number of subscripts
•  Parameters were separated by mode (in & out)
•  Subscripts were placed in brackets
•  Compound statements (begin ... end)
•  Semicolon as a statement separator
•  Assignment operator was :=
•  if had an else-if clause
Comments:

• Not meant to be implemented, but variations of it were
(MAD, JOVIAL)
• Although IBM was initially enthusiastic, all support was
dropped by mid-1959

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 29

Algol 60
Modified ALGOL 58 at 6-day meeting in Paris adding such

new features as:
•  Block structure (local scope)
•  Two parameter passing methods
•  Subprogram recursion
•  Stack-dynamic arrays
•  Still no I/O and no string handling

Successes:
•  It was the standard way to publish algorithms for over

20 years
•  All subsequent imperative languages are based on it
•  First machine-independent language
•  First language whose syntax was formally defined

(BNF)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 30

Failure: Never widely used, especially in U.S.,
mostly because

1.  No I/O and the character set made
programs nonportable

2.  Too flexible--hard to implement

3.  Entrenchment of FORTRAN

4.  Formal syntax description

5.  Lack of support of IBM

Algol 60 (1960)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 31

APL
• Designed by Ken Iverson at Harvard in late

1950’s
• APL = A Programming Language
• A language for programming mathematical

computations
– especially those using matrices

• Functional style and many whole array
operations

• Drawback is requirement of special keyboard

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 32

APL Examples

• APL required a special character set,
usually provided by an IBM Selectric
typewriter

• Here’s an example that prints the squares
of the first 10 integers: (ι 10) × (ι 10)
– ι (iota) is an operator takes a number and

returns a vector from 1 to that number
• The programming paradigm was focused

on vector and matrix operations

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 33

 The 1960s: An Explosion in
Programming Languages

• The development of hundreds of programming
languages

• PL/1 designed in 1963-4
–  supposed to be all purpose
–  combined features of FORTRAN, COBOL and Algol 60 and more!
–  translators were slow, huge and unreliable
–  some say it was ahead of its time......

• Algol68
• SNOBOL
• Simula
• BASIC

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 34

PL/I
•  Computing situation in 1964 (IBM's point of view)

Scientific computing
•  IBM 1620 and 7090 computers
•  FORTRAN
•  SHARE user group

Business computing
•  IBM 1401, 7080 computers
•  COBOL
•  GUIDE user group

•  IBM’s goal: develop a single computer (IBM 360) and a
single programming language (PL/I) that would be good
for scientific and business applications.

•  Eventually grew to include virtually every idea in current
practical programming languages.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 35

PL/I
PL/I contributions:
 1. First unit-level concurrency
 2. First exception handling
 3. Switch-selectable recursion
 4. First pointer data type
 5. First array cross sections

Comments:
•  Many new features were poorly designed
•  Too large and too complex
•  Was (and still is) actually used for both scientific

and business applications
•  Subsets (e.g. PL/C) developed which were more

manageable

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 36

Simula (1962-67)
•  Designed and built by Ole-Johan Dahl and Kristen

Nygaard at the Norwegian Computing Centre
(NCC) in Oslo between 1962 and 1967

• Originally designed and implemented for discrete
event simulation

• Based on ALGOL 60
Primary Contributions:

• Coroutines - a kind of subprogram
• Classes (data plus methods) and objects
•  Inheritance
• Dynamic binding

=> Introduced the basic ideas that developed into
object-oriented programming.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 37

From the continued development of ALGOL 60, but it is not
a superset of that language

•  Design is based on the concept of orthogonality

•  Contributions:

•  User-defined data structures

•  Reference types

•  Dynamic arrays (called flex arrays)

•  Comments:
•  Had even less usage than ALGOL 60
•  Had strong influence on subsequent languages,

especially Pascal, C, and Ada

Algol 68

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 38

The 1970s: Simplicity,
Abstraction, Study

• Algol-W - Nicklaus Wirth and C.A.R. Hoare
–  reaction against 1960s
–  Simplicity, used as a teaching language in some places

• Pascal
–  small, simple, efficient structures
–  for teaching programming

• C - 1972 - Dennis Ritchie
–  aims for simplicity by reducing restrictions of the type system
–  allows access to underlying system
–  interface with O/S - UNIX

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 39

Pascal (1971)

• Designed by Wirth, who quit the ALGOL 68
committee because he didn't like the direction
of that work

• Designed for teaching structured programming
•  Small, simple
•  Introduces some modest improvements, such as

the case statement
• Was widely used for teaching programming in

the 1980s
• CMSC 201 used Pascal up to Spring 1994

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 40

C (1972-)

• Designed for systems programming at Bell
Labs by Dennis Richie and colleagues.

• Evolved primarily from B, but also
ALGOL 68

• Powerful set of operators, but poor type
checking

• Initially spread through UNIX and the
availability of high quality, free compilers.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 41

Other descendants of ALGOL

• Modula-2 (mid-1970s by Niklaus Wirth at ETH)
• Pascal plus modules and some low-level

 features designed for systems programming
• Modula-3 (late 1980s at Digital & Olivetti)

• Modula-2 plus classes, exception handling,
garbage collection, and concurrency

• Oberon (late 1980s by Wirth at ETH)
• Adds support for OOP to Modula-2
• Many Modula-2 features were deleted (e.g., for

statement, enumeration types, with statement,
noninteger array indices)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 42

The 1980s: Consolidation
and New Paradigms

• Ada
– US Department of Defence
– European team lead by Jean Ichbiah

• Functional programming
– Scheme, ML, Haskell

• Logic programming
– Prolog

• Object-oriented programming
– Smalltalk, C++, Eiffel

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 43

Ada
•  In study done in 73-74 it was determined that the US

DoD was spending $3B annually on software, over
half on embedded computer systems

• The Higher Order Language Working Group was
formed and initial language requirements compiled
and refined in 75-76 and existing languages evaluated

•  In 1997, it was concluded that none were suitable,
though Pascal, ALGOL 68 or PL/I would be a good
starting point

• Language DoD-1 was developed thru a series of
competitive contracts

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 44

Ada
• Renamed Ada in May 1979
• Reference manual, Mil. Std. 1815 approved

10 December 1980. (Ada Bryon was born
10/12/1815)

• Ada was “mandated” for use in DoD work during
late 80’s and early 90’s.

• Ada95, a joint ISO and ANSI standard, accepted in
February 1995 and included many new features.

• The Ada Joint Program Office (AJPO) closed 1
October 1998 (Same day as ISO/IEC 14882:1998
(C++) published!)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 45

Ada
Contributions:
 1. Packages - support for data abstraction
 2. Exception handling - elaborate
 3. Generic program units
 4. Concurrency - through the tasking model
Comments:

• Competitive design
•  Included all that was then known about software

engineering and language design
• First compilers were very difficult; the first really

usable compiler came nearly five years after the
language design was completed

• Very difficult to mandate programming technology

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 46

• Developed at the University of Aix
Marseille, by Comerauer and Roussel, with
some help from Kowalski at the University
of Edinburgh

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent
database system that uses an inferencing
process to infer the truth of given queries

Logic Programming: Prolog

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 47

Prolog Example Program
parentOf(adam, able).
parentOf(eve, able).
parentOf(adam, cain).
parentOf(eve, cain).
male(adam).
female(eve).
motherOf(X,Y) :- parentOf(X,Y), female(X).
fatherOf(X,Y) :- parentOf(X,Y), female(X).
siblings(X,Y) :- parentOf(X,P1), parentOf(Y,P1), not(X=Y).

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 48

Functional Programming

• Common Lisp: consolidation of LISP dialects
spured practical use, as did the development of
Lisp Machines.

• Scheme: a simple and pure LISP like language
used for teaching programming.

• Logo: Used for teaching young children how to
program.

• ML: (MetaLanguage) a strongly-typed functional
language first developed by Robin Milner in the
70’s

• Haskell: polymorphicly typed, lazy, purely
functional language.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 49

Smalltalk (1972-80)
• Developed at Xerox PARC by Alan Kay and

colleagues (esp. Adele Goldberg) inspired by
Simula 67

• First compilation in 1972 was written on a bet to
come up with "the most powerful language in the
world" in "a single page of code".

•  In 1980, Smalltalk 80, a uniformly object-oriented
programming environment became available as the
first commercial release of the Smalltalk language

• Pioneered the graphical user interface everyone
now uses

• Saw some industrial use in late 80’s and early 90’s

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 50

• Developed at Bell Labs by Stroustrup

• Evolved from C and SIMULA 67

•  Facilities for object-oriented programming, taken
partially from SIMULA 67, added to C

• Also has exception handling

• A large and complex language, in part because it
supports both procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November, 1997

C++ (1985)

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 51

Eiffel

• Eiffel - a related language that supports OOP

 - (Designed by Bertrand Meyer - 1992)

 - Not directly derived from any other
language

 - Smaller and simpler than C++, but still has
most of the power

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 52

1990’s: the Internet and web

During the 90’s, Object-oriented languages
(mostly C++) became widely used in
practical applications

The Internet and Web drove several
phenomena:
– Adding concurrency and threads to existing

languages
– Increased use of scripting languages such as Perl

and Tcl/Tk
– Java as a new programming language

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 53

Java

• Developed at Sun in the early 1990s
with original goal of a language for
embedded computers

• Principals: Bill Joy, James Gosling, Mike
Sheradin, Patrick Naughton

• Original name, Oak, changed for copyright reasons
• Based on C++ but significantly simplified
• Supports only OOP
• Has references, but not pointers
•  Includes support for applets and a form of

concurrency

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 54

C# (C Sharp)

• Microsoft and Sun were bitter rivals in the
90s

• C# is Microsoft’s answer to Java
• C# is very similar to Java with (maybe)

some minor improvements
• If you know Java, learning C# should be

easy
• However: both languages have extensive

libraries, and mastering them is a big part of
mastering the language.

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 55

Scripting Languages
• Scripting languages like Perl, Ruby,

Javascript and PHP have become important
• They shine at connecting diverse pre-

existing components to accomplish new
tasks

• Cf. shell languages in Unix
• Typical properties include:

–  privileging rapid development over execution efficiency
–  implemented with interpreters rather than compilers
–  strong at communication with program components in

other languages

CMSC 331. Some material © 1998 by Addison Wesley Longman, Inc. 56

The future
• The 60’s dream was a single all purpose language (e.g.,

PL/I, Algol)
• The 70s and 80s dream expressed by Winograd (1979)

 “Just as high-level languages allow the programmer to
escape the intricacies of the machine, higher level
programming systems can provide for manipulating
complex systems. We need to shift away from algorithms
and towards the description of the properties of the
packages that we build. Programming systems will be
declarative not imperative”

• Will that dream be realised?
• Programming is not yet obsolete

