

• Implementing a language is a good way to
learn more about programming languages

• Interpreters are easier to implement than
compilers, in general

• Scheme is a simple language, but also a
powerful one

• Implementing it first in Scheme allows us to
put off some of the more complex lower-level
parts, like parsing and data structures

• While focusing on higher-level aspects

• Simple syntax and semantics
• John McCarthy’s original Lisp had very

little structure:
• Procedures CONS, CAR, CDR, EQ and

ATOM
• Special forms QUOTE, COND, SET and

LAMBDA
• Values T and NIL
• The rest of Lisp can be built on this

foundation (more or less)

• “A meta-circular evaluator is a special
case of a self-interpreter in which the
existing facilities of the parent interpreter
are directly applied to the source code
being interpreted, without any need for
additional implementation. Meta-circular
evaluation is most common in the
context of homoiconic languages”.
• We’ll look at an adaptation from

Abelson and Sussman,Structure and Interpretation of
Computer Programs, MIT Press, 1996.

• Homoiconicity is a property of some
programming languages
• From homo meaning the same and icon

meaning representation
• A programming language is homoiconic

if its primary representation for programs
is also a data structure in a primitive
type of the language itself
• Few examples: Lisp, Prolog, Snobol

• We’ll not do all of Scheme, just enough
for you to understand the approach
• We can us the same approach for an

interpreter for Scheme in Python
• To provide reasonable efficiency, we’ll

use mutable-pairs

• Scheme calls a cons cell a pair
• Lisp always had special functions to

change (aka destructively modify or
mutate) the components of a simple cons cell

• Can you detect a sentiment there?
• RPLACA (RePLAce CAr) was Lisp’s function

to replace the car of a cons cell with a new
pointer

• RPLACD (RePLAce CDr) clobbered the cons
cell’s cdr pointer

GL% clisp
...
[1]> (setq l1 '(a b))
(A B)
[2]> (setq l2 l1)
(A B)
[3]> (rplaca l2 'foo)
(FOO B)
[4]> l1
(FOO B)

[5]> l2
(FOO B)
[6]> (rplacd l1 '(2 3 4))
(FOO 2 3 4)
[7]> l1
(FOO 2 3 4)
[8]> l2
(FOO 2 3 4)

> (define l1 '(a b c d))

> l1
(a b c d)
> (set-car! l1 'foo)

> l1
(foo b c d)
> (set-cdr! l1 '(2 3))

> l1
(foo 2 3)

> (set-cdr! l1 l1)
> l1
#0=(foo . #0#)
> (cadr l1)
foo
> (caddr l1)
foo
> (cadddr l1)
foo

• Scheme removed set-car! and set-cdr! from
the language as of R6RS
• They played to their ideological base here
• Or maybe just eating their own dog food

• R6RS is the Revised **6 Report on the
Algorithmic Language Scheme

• R6RS does have a library, mutable-pairs,
provides a new datatype for a mutable pair
and functions for it
• mcons, mcar, mcdr, mlist, …set-mcar!, set-

mcdr!

• Some languages are created/promoted by a
company (e.g., Sun:Java, Microsoft:F#,
Apple:Objective C)

• But for a language to really be accepted, it
should be defined and maintained by the
community

• And backed by a well-defined standard
• That may be supported by a recognized

standards organizations (e.g., IEEE, ANSI,
W3C, etc)

• Scheme is standardized in the official
IEEE standard and via a de facto
standard called the Revisedn Report on
the Algorithmic Language Scheme
• Or RnRS
• Common versions:

• R5RS in 1998
• R6RS in 2007

> (define l1 (cons 1 (cons 2 empty)))
> l1
(1 2)
> (define m1 (mcons 1 (mcons 2

empty)))
> m1
{1 2}
> (car l1)
1
> (car m1)
. . car: expects argument of type

<pair>; given {1 2}

> (mcar m1)
1
> (set-car! l1 'foo)
. . reference to undefined identifier:
set-car!
> (set-mcar! l1 'foo)
. . set-mcar!: expects type <mutable-
pair> as 1st argument, given: (1 2);
other arguments were: foo
> (set-mcar! m1 'foo)
> m1
{foo 2}

• We’ll sketch out some rules to use in
evaluating an s-expession
• Then realize them in Scheme
• The (only) tricky part is representing an

environment: binding symbols to values
• Environments inherit from other
environments, so we’ll consider an
environment to be a set of frames

• We’ll start with a global environment

• An environment is just a list of frames
• The first frame is the current

environment, the second is the one it
inherits from, the third is the one the
second inherits from, etc.
• The last frame is the global or top level

environment

• An environment frame is just an
(unordered) collection of bindings
• A binding has two elements: a symbol

representing a variable and an object
representing its (current) value
• An environment might be represented as

(((x 100) (y 200))
 ((a 1) (b 2) (x 2))
 ((null ‘()) (empty ‘()) (cons …) …)
)

• Self-Evaluating - Just return their value

• Numbers and strings are self
evaluating

• Symbol - Lookup closest binding in the
current environment and return its
second element

• Raise an error if not found

Special forms are those that get evaluated
in a special, non-standard way

•  (quote X) – return X
•  (define X B) – bind X to evaluation of B
•  (lambda VARS BODY) - Make a procedure,

write down VARS and BODY, do not evaluate
•  (set! X Y) – find X binding name, eval Y and set

X to the return value
•  (if X Y Z) – eval X and then eval either Y or Z

• Primitive: (F . ARGS)
• Apply by magic...
• User-defined: (F . ARGS)

• Make a new environment frame
• Extend to procedures frame
• Bind arguments to formal parameters
• Evaluate procedure body in the new
frame

• Return its value

• We’re implementing an interpreter for
Scheme in Scheme
• The host language (Scheme) will do many

details: data representation, reading,
printing, primitives (e.g., cons, car, +)
• Our implementation will focus on a few

key parts: eval, apply, variables and
environments, user defined functions, etc.

•  mcs.ss: simple Scheme subset
•  mcs_scope.ss: larger Scheme subset
•  mcs_basics.ss: 'library' of basic

functions
•  readme.txt: short intro text
•  session.txt: example of McScheme in

use

http://cs.umbc.edu/331/f11/code/scheme/mcs/

• define can only assign a variable to a
value, i.e., 1st arg must be a symbol.
Define functions like:
 (define add1 (lambda (x) (+ x 1))
• lambda only allows one expression in

body; for more use begin:
(lambda (x) (begin (define y (* x x)) (* y y)))
• No set! to assign variables outside of the

local environment (e.g., global variables)

Here’s a trivial read-eval-print loop:
(define (mcscheme)
 ;; mcscheme read-eval-print loop
 (printf "mcscheme> ")
 (mcprint (mceval (read) global-env))
 (mcscheme))

(define (mcprint x)
 ;; Top-level print: print x iff it's not void
 (or (void? x) (printf "~s~n" x)))

The eval and apply operations have been fundamental from the start

(define (mceval exp env)

 (cond ((self-evaluating? exp) exp)

 ((symbol? exp) (lookup exp env))

 ((special-form? exp)

 (do-something-special exp env))

 (else (mcapply (mceval (car exp) env)

 (map (lambda (e) (mceval e env))

 (cdr exp))))))

(define (mcapply op args)

 (if (primitive? op)

 (do-magic op args)

 (mceval (op-body op)

 (extend-environment

 (op-formals op)

 args

 (op-env op)))))

• In Scheme or Lisp, the representation of a
function has three parts:
• A list of the names of its formal parameters
• The expression(s) that make up the

function’s body, i.e. the code to be evaluated
• The environment in which the function was

defined, so values of non-local symbols can
be looked up

• We might just represent a function as a list like
(procedure (x y) (+ (* 2 x) y) (… env …))

• An environment is just a list of environment
frames
• The last frame in the list is the global one
• The nth frame in the list extends the n+1th

• An environment frame records two things
• A list of variables bound in the environment
• The values they are bound to

• Suppose we want to extend the global environ-
ment with a new local one where x=1 and y=2

• Consider entering:
 (define foo 100)
 (define square (lambda (x) (* x x)))
 (define x -100)

• The environment after evaluating the first
three expressions would look like:

(((x . -100)
 (square lambda (x)(* x x) #0)
 (foo . 100)
 …)
)

• Consider entering:
 (square foo)
• mcscheme evaluates square and foo in

the current environment and pushes a new
frame onto the environment in which x is
bound to 100
(((x . 100))
 ((x . -100)
 (square lsmbda (x)(* x x))
 (foo . 100) ...)
)

Take a look at the handout

(define (mceval exp env)
 (cond

((or (number? exp) (string? exp)
 (boolean? exp) (eof-object? exp)) exp)
 ((symbol? exp) (lookup exp env))
 ((eq? (first exp) 'quote) (second exp))
 ((eq? (first exp) 'begin) (last (map (lambda (x)(mceval x env)) (rest exp))))
 ((eq? (first exp) 'if) (if (mceval (second exp) env)
 (mceval (third exp) env)
 (mceval (fourth exp) env)))
 ((eq? (first exp) 'define)
 (mcdefine (second exp) (mceval (third exp) env) env))
 ((eq? (first exp) 'load) (call-with-input-file (second exp) mcload))
 ((eq? (first exp) 'lambda)
 (list 'LAMBDA (second exp) (third exp) env))
 (else (mcapply (mceval (first exp) env)
 (map (lambda (x)(mceval x env)) (rest exp))))))

(define (mcapply proc args)
 ;; apply procedure proc to arguments args
 (cond ((procedure? proc) (apply proc args))
 ((and (pair? proc) (eq? (first proc) 'LAMBDA))
 (mceval (third proc)
 (cons (make-frame (second proc) args)
 (fourth proc))))
 (else
 (mcerror "mcapply: Undefined procedure" proc))))

(define (make-frame vars values)
 ;; Makes an environment frame with variables
 ;; vars and initial values values, e.g.
 (mmap mcons (l2ml vars) (l2ml values)))

(define (l2ml l)
 ;; takes a list and returns a mutable list (mlist)
 (if (null? l) l (mcons (car l) (l2ml (cdr l)))))

> (make-frame '(a b) '(1 2))
{ {a . 1} {b . 2} }

;; Primitives defined as their Scheme counterparts
(define builtins '(car cdr cons number? pair?

 string? eq? + - * / = < > print eof))

;; intial global environment
(define global-env

(list (make-frame builtins (map eval builtins))))

> global-env
({ {car . #<procedure:car>}
 {cdr . #<procedure:cdr>}
 ...
 {eof . #<eof>} })

(define (lookup var env)
 ;; return value of variable var in environment env
 (cond ((null? env) (mcerror "unbound: " var))
 ((massoc var (first env))
 (mcdr (massoc var (first env))))
 (else (lookup var (rest env)))))

; massoc = assoc for mutable-pairs. Returns
; tuple in 2nd arg whose car equals 1st arg
> (massoc 'cons (car global-env))
{cons . #<procedure:cons>}

(define (mcdefine var val env)
 ;; define var in environment env, giving it value val
 (let ((frame (first env)))
 (if (massoc var frame)
 ;; variable already defined, change it's value
 (set-mcdr! (massoc var frame) val)
 ;; add a new var-val cell to the end of the frame
 (set-mcdr! (mlast-pair frame)
 (mcons (mcons var val) null))))
 (void))

> (define e (list (mlist (mlist 'a 1) (mlist 'b 2))))
> e
({{a 1} {b 2}})
> (mcdefine 'b -2 e)
> e
({{a 1} {b . -2}})
> (mcdefine 'c 3 e)
> e
({{a 1} {b . -2} {c . 3}})
>

• Define only works on the
current frame, i.e., first
frame in environment

•  If it finds the variable, it
changes its value

• Otherwise, it adds a new
tuple at the frame’s end

(define (set-variable-value! var val env)
 (define (env-loop env)
 (define (scan vars vals)
 (cond ((null? vars) (env-loop (enclosing-environment env)))
 ((eq? var (car vars)) (set-car! vals val))
 (else (scan (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable -- SET!" var)
 (let ((frame (car-frame env)))
 (scan (frame-variables frame) (frame-values frame)))))
 (env-loop env))

> (load "mcs.ss")
"mcscheme:, (mcscheme) to start, ^C to leave"
> (mcscheme)
mcscheme> 100
100
mcscheme> (+ 100 200)
300
mcscheme> (define fact (lambda (n) (if (< n 2) 1 (* n (fact (- n 1))))))
mcscheme> fact
#0=(LAMBDA (n) (if (< n 2) 1 (* n (fact (- n 1)))) ({{car
 . #<procedure:car>} … {eof . #<eof>} {fact . #0#}}))
mcscheme> (fact 8)
40320
mcscheme> (load "mcs_basics.ss")
mcscheme> (map add1 '(1 2 3 4 5))
(2 3 4 5 6)
mcscheme> (reverse '(1 2 3 4 5))
(5 4 3 2 1)

• We studied an interpreter for a very limited
subset of Scheme

• It relies on the host language (Scheme) for
many details (e.g., representing lists,
primitive functions, read and print)

• Key concepts: eval, apply, environments,
use-defined functions

• Using this as a base, we can expand the
Scheme subset covered

• And use it as a model when implementing
Scheme in other languages

