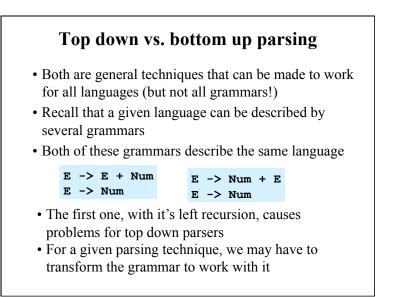


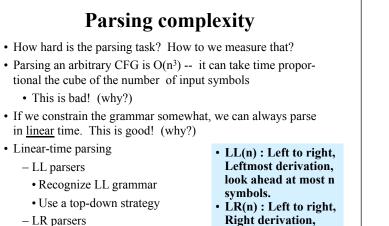
Parsing

- A grammar describes syntactically legal strings in a language
- A recogniser simply accepts or rejects strings
- A generator produces strings
- A *parser* constructs a parse tree for a string
- Two common types of parsers:
 - -bottom-up or data driven
 - -top-down or hypothesis driven
- A *recursive descent parser* easily implements a top-down parser for simple grammars

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- **Top-down parsers:** starts constructing the parse tree at the top (root) and move A = 1 + 3 * 4 / 5down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.:
 - Predictive parsers (e.g., LL(k))
- **Bottom-up parsers:** build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.:
 - -shift-reduce parser (or LR(k) parsers)
- Both are general techniques that can be made to work for all languages (but not all grammars!).





- Recognize LR grammar
- Use a bottom-up strategy

Right derivation, look ahead at most n symbols.

Top Down Parsing Methods

- Simplest method is a full-backup, recursive descent parser
- Often used for parsing simple languages
- Write recursive recognizers (subroutines) for each grammar rule
 - -If rules succeeds perform some action (i.e., build a tree node, emit code, etc.)
 - -If rule fails, return failure. Caller may try another choice or fail
 - -On failure it "backs up"

Top Down Parsing Methods: Problems

• When going forward, the parser consumes tokens from the input, so what happens if we have to back up?

- suggestions?

- Algorithms that use backup tend to be, in general, inefficient
 - There might be a large number of possibilities to try before finding the right one or giving up
- Grammar rules which are left-recursive lead to non-termination!

Recursive Decent Parsing: Example For the grammar:

<term> -> <factor> {(*|/)<factor>}*

We could use the following recursive descent parsing subprogram (this one is written in C)

```
void term()
                /* parse first factor*/
  factor();
  while (next token == ast code ||
       next token == slash code) {
   lexical(); /* get next_token */
    factor(); /* parse next factor */
  }
ı
```

Problems

- Some grammars cause problems for top down parsers
- Top down parsers do not work with leftrecursive grammars
 - E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

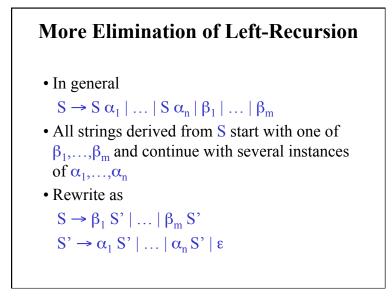
Left-recursive grammars

- A grammar is left recursive if it has rules like
 - X -> X β
- Or if it has indirect left recursion, as in $\chi \rightarrow A \beta$
 - A -> X
- Q: Why is this a problem? -A: it can lead to non-terminating recursion!

Left-recursive grammars

- Consider
 - E -> E + Num
 - E -> Num
- We can manually or automatically rewrite a grammar removing leftrecursion, making it ok for a top-down parser.

Elimination of Left Recursion • Consider left-recursive • Concretely $T \rightarrow T + id$ grammar $T \rightarrow id$ $S \rightarrow S \alpha$ • T generates strings $S \rightarrow \beta$ id • S generates strings id+id β id+id+id ... βα • Rewrite using rightβαα ... recursion • Rewrite using right- $T \rightarrow id$ recursion $T \rightarrow id T$ $S \rightarrow \beta S'$ $S' \rightarrow \alpha S' \vdash \varepsilon$



General Left Recursion

- The grammar $S \rightarrow A \alpha \mid \delta$ $A \rightarrow S \beta$ is also left-recursive because $S \rightarrow^+ S \beta \alpha$ where \Rightarrow^+ means "can be rewri
 - where \rightarrow^+ means "can be rewritten in one or more steps"
- This indirect left-recursion can also be automatically eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - $-\dots$ but that can be done automatically
- Unpopular because of backtracking – Thought to be too inefficient
- In practice, backtracking is eliminated by further restricting the grammar to allow us to successfully *predict* which rule to use

Predictive Parsers

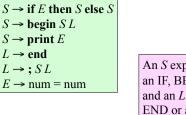
- That there can be many rules for a non-terminal makes parsing hard
- A *predictive parser* processes the input stream typically from left to right
- Is there any other way to do it? Yes for programming languages!
- It uses information from peeking ahead at the *upcoming terminal symbols* to decide which grammar rule to use next
- And *always* makes the right choice of which rule to use
- How much it can peek ahead is an issue

Predictive Parsers

- An important class of predictive parser only peek ahead one token into the stream
- An an *LL(k)* parser, does a Left-to-right parse, a Leftmost-derivation, and **k**-symbol lookahead
- Grammars where one can decide which rule to use by examining only the *next* token are LL(1)
- LL(1) grammars are widely used in practice
- The syntax of a PL can usually be adjusted to enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar



An S expression starts either with an IF, BEGIN, or PRINT token, and an L expression start with an END or a SEMICOLON token, and an E expression has only one production.

Remember...

- Given a grammar and a string in the language defined by the grammar ...
- There may be more than one way to *derive* the string leading to the *same parse tree*
- It depends on the order in which you apply the rules
- -And what parts of the string you choose to rewrite next
- All of the derivations are valid
- To simplify the problem and the algorithms, we often focus on one of two simple derivation strategies
- A leftmost derivation
- -A rightmost derivation

LL(k) and **LR(k)** parsers

- Two important parser classes are LL(k) and LR(k)
- The name LL(k) means:
- L: Left-to-right scanning of the input
- L: Constructing *leftmost derivation*
- k: max # of input symbols needed to predict parser action
- The name LR(k) means:
- L: Left-to-right scanning of the input
- R: Constructing *rightmost derivation* in reverse
- k: max # of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to *"look ahead"* more than *one* input token to know what parser production rule applies

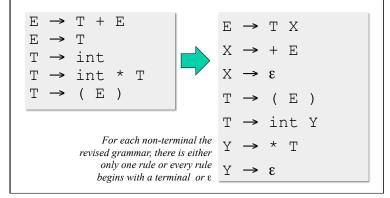
Predictive Parsing and Left Factoring

- Consider the grammar
 - $E \rightarrow T + E$ $E \rightarrow T$
 - $T \rightarrow int$
 - $T \rightarrow int * T$
 - $T \rightarrow (E)$

- Even left recursion is removed, a grammar may not be parsable with a LL(1) parser
- · Hard to predict because
 - For T, two productions start with int
 - For E, it is not clear how to predict which rule to use
- Must **left-factored** grammar before use for predictive parsing
- Left-factoring involves rewriting rules so that, if a nonterminal has > 1 rule, <u>each</u> begins with a **terminal**

Left-Factoring Example

Add new non-terminals X and Y to factor out **common prefixes** of rules



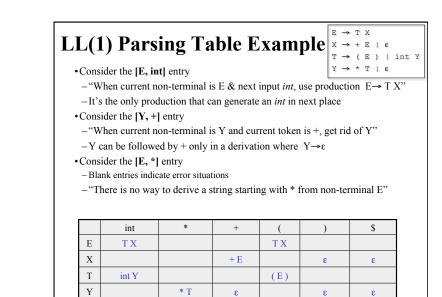
Left Factoring

- Consider a rule of the form A => a B1 | a B2 | a B3 | ... a Bn
- A top down parser generated from this grammar is not efficient as it requires backtracking.
- To avoid this problem we left factor the grammar. - Collect all productions with the same left hand side and
 - begin with the same symbols on the right hand side - Combine common strings into a single production and
 - append a new non-terminal to end of this new production – Create new productions using this new non-terminal for
 - each of the suffixes to the common production.
- After left factoring the above grammar is transformed into: A -> a A1
 - A1 -> B1 | B2 | B3 \dots Bn

Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only **one** production
- Can be represented as a simple table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one rule's action or empty if error
- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And chose the production shown at table cell [S, a]
- Use a stack to keep track of pending non-terminals
- Reject when we encounter an error state, accept when we encounter end-of-input

Le	ft-factor	ed gram	mar			
Е —	→ T X					
х –	→ + E 8	ε				
т —	⇒ (E)	int Y				
		r.				
Y -	> * T 8	c				
Ү —	> * T 8	c			End of i	nput symbol
		rsing table	•		End of i	nput symbol
			, +	(End of i	nput symbol
[he]	LL(1) pai	rsing table	1	(T X	End of i	
	LL(1) pai	rsing table	1	(T X	End of i	
The E	LL(1) pai	rsing table	+	(TX (E))	s



LL(1) Parsing Algorithm

initialize stack = <s \$=""> and next repeat case stack of</s>	
$\langle X, rest \rangle$: if T[X,*next] = Y ₁ Y _n	
then stack $\leftarrow < Y_1 \dots Y_n$ r	·est>;
else error ();	
<t, rest=""> : if t == *next ++</t,>	
then stack \leftarrow <rest>;</rest>	
else error ();	
until stack == $< >$	
(1) next points to the next input token (2) X matches some non-terminal	
(2) X matches some non-terminal	
(3) t matches some terminal	

		LL	(1) Parsi	ng Exa	mple		
s	tack		Input		Act	<u>tion</u>	
E	\$	i	nt * int :	\$	pop ()	;push(T)	X)
Т	X \$	i	nt * int :	\$	pop(),	;push(in	tY)
i	nt Y	X \$ i	nt * int :	\$	pop()	next++	
Y	X \$	*	int \$		pop(),	; push(* !	Г)
*	тх	\$ *	int \$		pop(),	next++	
Т	X \$	i	nt \$		pop()	push(in	tY)
i	nt Y	X \$ i	nt \$		pop()	;next++;	
Y	X \$	\$			pop()		
X	\$	\$			pop()		
\$		\$			ACCEP	E !	
$E \rightarrow TX$		int	*	+	()	\$
$X \rightarrow +E$ $X \rightarrow E$	Е	ΤX			ΤХ		
$T \rightarrow (E)$	X			+ E		ε	ε
$T \rightarrow int T$ $Y \rightarrow *T$	Ť	int Y			(E)		
$\textbf{Y} \rightarrow \boldsymbol{\epsilon}$	Y		* T	ε		ε	ε

Constructing Parsing Tables

- No table entry can be multiply defined
- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In column t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in First(\alpha)$
- In the column t if α is ϵ and t can follow an A
 - S $\rightarrow^* \beta A t \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = $\{t | X \rightarrow^* t\alpha\} \cup \{\varepsilon | X \rightarrow^* \varepsilon\}$

Algorithm sketch (see book for details):

- 1. for all terminals t do First(t) \leftarrow { t }
- 2. for each production $X \rightarrow \varepsilon$ do First(X) $\leftarrow \{\varepsilon\}$
- 3. if $X \rightarrow A_1 \dots A_n \alpha$ and $\epsilon \in \text{First}(A_i), 1 \le i \le n$ do add First(α) to First(X)
- 4. for each $X \rightarrow A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do add ε to First(X)
- 5. repeat steps 4 and 5 until no First set can be grown

First Sets. Example

Recall the grammar $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$ First setsFirst(()) = { ()First()) = {) }First(T) = { int, ()First(int) = { (int)First(E) = { int, ()First(int) = { int }First(X) = { +, ε }First(*) = { * }First(Y) = { *, ε }

Computing Follow Sets

• Definition:

Follow(X) = { $t | S \rightarrow^* \beta X t \delta$ }

Intuition

– If S is the start symbol then $\{ \in Follow(S) \}$

- If $X \rightarrow A \ B$ then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B) - Also if B $\rightarrow^* \varepsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\varepsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

• Recall the grammar

$E \rightarrow T X$	$X \twoheadrightarrow + E \mid \epsilon$
$T \rightarrow (E) \mid int Y$	$Y \twoheadrightarrow {}^{*}T \mid \epsilon$

Follow sets
Follow(+) = { int, (} Follow(*) = { int, (}
Follow(() = { int, (} Follow(E) = {), \$}
Follow(X) = {\$,)} Follow(T) = {+,), \$}
Follow()) = {+,), \$} Follow(Y) = {+,), \$}
Follow(int) = {*, +,), \$}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do

• T[A, t] =
$$\alpha$$

– If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do

•
$$T[A, t] = \alpha$$

- If
$$\varepsilon \in \text{First}(\alpha)$$
 and $\$ \in \text{Follow}(A)$ do

•
$$T[A, \$] = \alpha$$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- Reasons why a grammar is not LL(1) include
 - G is ambiguous
 - -G is left recursive
 - -G is not left-factored
- Most programming language grammars are not strictly LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: **shift** and **reduce**
 - In abstract terms, we do a simulation of a <u>Push Down Automata</u> as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol

Algorithm

- 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
- 2. Repeat until the input buffer is empty and the stack contains the start symbol.
- a. <u>Shift</u> zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.
- b. <u>Reduce</u> handle to the nonterminal A. (There is a production *A* -> *beta*)
- 3. <u>Accept</u> input string and return some representation of the derivation sequence found (e.g., <u>parse tree</u>)
- The four key operations in bottom-up parsing are <u>shift, reduce, accept</u> and <u>error.</u>
- Bottom-up parsing is also referred to as shift-reduce parsing.
- Important thing to note is to know when to shift and when to reduce and to which reduce.

STACK	INPUT BUFFER	ACTION	
\$	num1+num2*num3\$	shift	
\$num1	+num2*num3\$	reduc	$E \rightarrow E+T$
\$F	+num2*num3\$	reduc	T
\$Т	+num2*num3\$	reduc	E-T
\$E	+num2*num3\$	shift	T -> T*F F
\$E+	num2*num3\$	shift	T T/F
\$E+num2	*num3\$	reduc	F -> (E)
\$E+F	*num3\$	reduc	id
\$E+T	*num3\$	shift	- E
E+T*	num3\$	shift	num
E+T*num3	\$	reduc	
E+T*F	\$	reduc	
E+T	\$	reduc	
Е	\$	accept	