4(c) parsing

2*(3+4)+5

Parsing

- A grammar describes syntactically legal strings in a language
- A *recogniser* simply accepts or rejects strings
- A generator produces strings
- A parser constructs a parse tree for a string
- Two common types of parsers:

-bottom-up or data driven

-top-down or hypothesis driven

• A *recursive descent parser* easily implements a top-down parser for simple grammars

Top down vs. bottom up parsing

- The parsing problem is to connect the root node S with the tree leaves, the input
- **Top-down parsers:** starts constructing the parse tree at the top (root) and move A = 1 + 3 * 4 / 5down towards the leaves. Easy to implement by hand, but requires restricted grammars. E.g.:

S

- Predictive parsers (e.g., LL(k))
- Bottom-up parsers: build nodes on the bottom of the parse tree first. Suitable for automatic parser generation, handles larger class of grammars. E.g.: shift-reduce parser (or LR(k) parsers)
- Both are general techniques that can be made to work for all languages (but not all grammars!).

Top down vs. bottom up parsing

- Both are general techniques that can be made to work for all languages (but not all grammars!)
- Recall that a given language can be described by several grammars
- Both of these grammars describe the same language

$E \rightarrow E + Num$	E -> Num + E
E -> Num	E -> Num

- The first one, with it's left recursion, causes problems for top down parsers
- For a given parsing technique, we may have to transform the grammar to work with it

Parsing complexity

- How hard is the parsing task? How to we measure that?
- Parsing an arbitrary CFG is O(n³) -- it can take time proportional the cube of the number of input symbols
 - This is bad! (why?)
- If we constrain the grammar somewhat, we can always parse in <u>linear</u> time. This is good! (why?)
- Linear-time parsing
 - LL parsers
 - Recognize LL grammar
 - Use a top-down strategy
 - LR parsers
 - Recognize LR grammar
 - Use a bottom-up strategy

- LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
- LR(n) : Left to right, Right derivation, look ahead at most n symbols.

Top Down Parsing Methods

- Simplest method is a full-backup, *recursive descent* parser
- Often used for parsing simple languages
- Write recursive recognizers (subroutines) for each grammar rule
 - -If rules succeeds perform some action (i.e., build a tree node, emit code, etc.)
 - -If rule fails, return failure. Caller may try another choice or fail
 - -On failure it "backs up"

Top Down Parsing Methods: Problems

• When going forward, the parser consumes tokens from the input, so what happens if we have to back up?

-suggestions?

- Algorithms that use backup tend to be, in general, inefficient
 - There might be a large number of possibilities to try before finding the right one or giving up
- Grammar rules which are left-recursive lead to non-termination!

Recursive Decent Parsing: Example For the grammar:

```
<term> -> <factor> {(*|/)<factor>}*
```

We could use the following recursive descent parsing subprogram (this one is written in C)

```
void term() {
  factor();    /* parse first factor*/
  while (next_token == ast_code ||
        next_token == slash_code) {
        lexical();    /* get next_token */
        factor();    /* parse next_factor */
    }
}
```

Problems

- Some grammars cause problems for top down parsers
- Top down parsers do not work with leftrecursive grammars
 - -E.g., one with a rule like: E -> E + T
 - We can transform a left-recursive grammar into one which is not
- A top down grammar can limit backtracking if it only has one rule per non-terminal
 - The technique of rule factoring can be used to eliminate multiple rules for a non-terminal

Left-recursive grammars

• A grammar is left recursive if it has rules like

 $X \rightarrow X \beta$

- Or if it has indirect left recursion, as in
 - X -> A β
 - A -> X
- Q: Why is this a problem?
 A: it can lead to non-terminating recursion!

Left-recursive grammars

- Consider
 - E −> E + Num
 - E -> Num
- We can manually or automatically rewrite a grammar removing leftrecursion, making it ok for a top-down parser.

Elimination of Left Recursion

• Consider left-recursive grammar

 $S \rightarrow S \alpha$

- S -> β
- S generates strings β $\beta \alpha$ $\beta \alpha \alpha$...
- Rewrite using rightrecursion

$$S \rightarrow \beta S'$$

$$S' \rightarrow \alpha S' \mid \epsilon$$

- Concretely T -> T + id T-> id
- T generates strings id id+id id+id+id ...
- Rewrite using rightrecursion

T -> id

 $T \rightarrow id T$

More Elimination of Left-Recursion

• In general

 $S \twoheadrightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$

- All strings derived from S start with one of β_1, \dots, β_m and continue with several instances of $\alpha_1, \dots, \alpha_n$
- Rewrite as

 $S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$ $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \varepsilon$

General Left Recursion

• The grammar

 $S \rightarrow A \alpha \mid \delta$

 $A \rightarrow S \beta$

is also left-recursive because

 $S \rightarrow^+ S \beta \alpha$

where →⁺ means "can be rewritten in one or more steps"

• This indirect left-recursion can also be automatically eliminated

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - $-\ldots$ but that can be done automatically
- Unpopular because of backtracking

 Thought to be too inefficient
- In practice, backtracking is eliminated by further restricting the grammar to allow us to successfully *predict* which rule to use

Predictive Parsers

- That there can be many rules for a non-terminal makes parsing hard
- A *predictive parser* processes the input stream typically from left to right
 - Is there any other way to do it? Yes for programming languages!
- It uses information from peeking ahead at the *upcoming terminal symbols* to decide which grammar rule to use next
- And *always* makes the right choice of which rule to use
- How much it can peek ahead is an issue

Predictive Parsers

- An important class of predictive parser only peek ahead one token into the stream
- An an *LL(k)* parser, does a Left-to-right parse, a Leftmost-derivation, and **k**-symbol lookahead
- Grammars where one can decide which rule to use by examining only the *next* token are LL(1)
- LL(1) grammars are widely used in practice

 The syntax of a PL can usually be adjusted to
 enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

 $S \rightarrow if E then S else S$ $S \rightarrow begin S L$ $S \rightarrow print E$ $L \rightarrow end$ $L \rightarrow ; S L$ $E \rightarrow num = num$

An *S* expression starts either with an IF, BEGIN, or PRINT token, and an *L* expression start with an END or a SEMICOLON token, and an *E* expression has only one production.

Remember...

- Given a grammar and a string in the language defined by the grammar ...
- There may be more than one way to *derive* the string leading to the *same parse tree*
 - It depends on the order in which you apply the rules
 - -And what parts of the string you choose to rewrite next
- All of the derivations are *valid*
- To simplify the problem and the algorithms, we often focus on one of two simple derivation strategies
 - -A *leftmost* derivation
 - -A rightmost derivation

LL(k) and **LR(k)** parsers

- Two important parser classes are LL(k) and LR(k)
- The name LL(k) means:
 - L: *Left-to-right* scanning of the input
 - L: Constructing *leftmost derivation*
 - -k: max # of input symbols needed to predict parser action
- The name LR(k) means:
 - L: *Left-to-right* scanning of the input
 - R: Constructing *rightmost derivation* in reverse
 - k: max # of input symbols needed to select parser action
- A LR(1) or LL(1) parser never need to *"look ahead"* more than *one* input token to know what parser production rule applies

Predictive Parsing and Left Factoring

- Consider the grammar
 - $E \rightarrow T + E$
 - $E \rightarrow T$
 - $T \rightarrow int$
 - $T \rightarrow int * T$
 - T → (E)

Even left recursion is removed, a grammar may not be parsable with a LL(1) parser

- Hard to predict because
 - For T, two productions start with *int*
 - For E, it is not clear how to predict which rule to use
- Must **left-factored** grammar before use for predictive parsing
- Left-factoring involves rewriting rules so that, if a nonterminal has > 1 rule, <u>each</u> begins with a **terminal**

Left-Factoring Example

Add new non-terminals X and Y to factor out **common prefixes** of rules

Left Factoring

• Consider a rule of the form

A => a B1 | a B2 | a B3 | ... a Bn

- A top down parser generated from this grammar is not efficient as it requires backtracking.
- To avoid this problem we left factor the grammar.
 - Collect all productions with the same left hand side and begin with the same symbols on the right hand side
 - Combine common strings into a single production and append a new non-terminal to end of this new production
 - Create new productions using this new non-terminal for each of the suffixes to the common production.
- After left factoring the above grammar is transformed into:
 A -> a A1

 $A1 \rightarrow B1 | B2 | B3 \dots Bn$

Using Parsing Tables

- LL(1) means that for each non-terminal and token there is only **one** production
- Can be represented as a simple table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one rule's action or empty if error
- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token *a*
 - And chose the production shown at table cell [S, a]
- Use a stack to keep track of pending non-terminals
- Reject when we encounter an error state, accept when we encounter end-of-input

LL(1) Parsing Table Example

Left-factored grammar

- $E \rightarrow T X$ $X \rightarrow + E | \epsilon$ $T \rightarrow (E) | int Y$
- $3 \rightarrow T = T$

End of input symbol

The LL(1) parsing table

	int	*	+	()	\$
E	ТХ			ТХ		
Χ			+ E		3	3
Τ	int Y			(E)		
Y		* T	3		3	3

LL(1) Parsing Table Example $\begin{bmatrix} E \rightarrow T & X \\ X \rightarrow + E & I & \epsilon \\ T \rightarrow (E & I & I & I \\ Y \rightarrow T & I & \epsilon \end{bmatrix}$

- Consider the **[E, int]** entry
 - -"When current non-terminal is E & next input *int*, use production $E \rightarrow T X$ "
 - -It's the only production that can generate an *int* in next place
- Consider the **[Y, +]** entry
 - -"When current non-terminal is Y and current token is +, get rid of Y"
 - -Y can be followed by + only in a derivation where $Y \rightarrow \varepsilon$
- Consider the [E, *] entry
 - Blank entries indicate error situations
 - -"There is no way to derive a string starting with * from non-terminal E"

	int	*	+	()	\$
E	ТХ			ТХ		
Х			+ E		3	3
Т	int Y			(E)		
Y		* T	3		3	3

LL(1) Parsing Algorithm

```
initialize stack = \langle S \rangle and next
repeat
   case stack of
      \langle X, rest \rangle : if T[X,*next] = Y<sub>1</sub>...Y<sub>n</sub>
                             then stack \leftarrow \langle Y_1 \dots Y_n \text{ rest} \rangle;
                             else error ();
      <t, rest> : if t == *next ++
                             then stack \leftarrow <rest>;
                             else error ();
```

until stack = = < >

(1) next points to the next input token where: (2) X matches some non-terminal (3) t matches some terminal

LL(1) Parsing Example

<u>Sta</u>	ack		Input		Act	tion	
E \$	5		int * int	\$	pop()	;push(T 2	X)
ТΣ	ζ\$		int * int	\$	pop()	;push(in	tY)
int	Y Y	Χ\$.	int * int	\$	pop();next++		
Y X	Κ\$		* int \$		<pre>pop();push(* T)</pre>		
×]	X S	\$	<pre>* int \$ pop();next++</pre>				
T X	ТХ\$			<pre>int \$ pop();push(int)</pre>			tY)
int Y X \$ Y X \$			int \$		<pre>pop();next++; pop()</pre>		
			\$				
X Ş	X \$		\$		pop()		
\$			\$		ACCEP	г!	
$E \rightarrow TX$		int	*	+	()	\$
$X \rightarrow +E$ $X \rightarrow c$	Е	ТХ			ТХ		
$X \rightarrow c$ $T \rightarrow (E)$	X			+ E		3	3
$T \rightarrow int Y$ $Y \rightarrow T$	Т	int Y			(E)		
Y → ε	Y		* T	3		3	8

Constructing Parsing Tables

- No table entry can be multiply defined
- If $A \rightarrow \alpha$, where in the line of A we place α ?
- In column t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in First(\alpha)$
- In the column t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = {t| $X \rightarrow^* t\alpha$ } \cup { ϵ | $X \rightarrow^* \epsilon$ }

Algorithm sketch (see book for details):

- 1. for all terminals t do First(t) \leftarrow { t }
- 2. for each production $X \rightarrow \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \rightarrow A_1 \dots A_n \alpha$ and $\epsilon \in \text{First}(A_i), 1 \le i \le n$ do add First(α) to First(X)
- 4. for each $X \rightarrow A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do add ε to First(X)
- 5. repeat steps 4 and 5 until no First set can be grown

First Sets. Example

Recall the grammar

 $E \rightarrow T X$ $T \rightarrow (E) | int Y$ First sets First(()) = { (} First()) = {) } First(int) = { int } First(+) = { + } First(*) = { * }

$$X \rightarrow + E \mid \varepsilon$$
$$Y \rightarrow * T \mid \varepsilon$$

First(T) = {int, (}
First(E) = {int, (}
First(X) = {+, ε }
First(Y) = {*, ε }

Computing Follow Sets

• Definition:

Follow(X) = { $t | S \rightarrow^* \beta X t \delta$ }

Intuition

– If S is the start symbol then $\$ \in Follow(S)$

- If X \rightarrow A B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B) - Also if B $\rightarrow^* \epsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets

Algorithm sketch:

- 1. Follow(S) $\leftarrow \{\$\}$
- 2. For each production $A \rightarrow \alpha X \beta$
 - add $First(\beta) \{\epsilon\}$ to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\varepsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) _____ until no Follow set grows

Follow Sets. Example

- Recall the grammar
 - $E \rightarrow T X \qquad X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y \qquad Y \rightarrow * T \mid \varepsilon$
- Follow sets

 $Y \to * T \mid \varepsilon$

Follow(+) = { int, (} Follow(*) = { int, (} Follow(() = { int, (} Follow(E) = {), \$} Follow(X) = { \$,) } Follow(T) = { +,), \$} Follow() = { +,), \$ Follow(Y) = { +,), \$} Follow(int) = { *, +,), \$}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - T[A, \$] = α

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- Reasons why a grammar is not LL(1) include -G is ambiguous
 - -G is left recursive
 - -G is not left-factored
- Most programming language grammars are not strictly LL(1)
- There are tools that build LL(1) tables

Bottom-up Parsing

- YACC uses bottom up parsing. There are two important operations that bottom-up parsers use: **shift** and **reduce**
 - In abstract terms, we do a simulation of a
 <u>Push Down Automata</u> as a finite state automata
- Input: given string to be parsed and the set of productions.
- Goal: Trace a rightmost derivation in reverse by starting with the input string and working backwards to the start symbol

Algorithm

- 1. Start with an empty stack and a full input buffer. (The string to be parsed is in the input buffer.)
- 2. Repeat until the input buffer is empty and the stack contains the start symbol.
 - a. <u>Shift</u> zero or more input symbols onto the stack from input buffer until a handle (beta) is found on top of the stack. If no handle is found report syntax error and exit.

b. <u>Reduce</u> handle to the nonterminal A. (There is a production $A \rightarrow beta$)

- 3. <u>Accept</u> input string and return some representation of the derivation sequence found (e.g., <u>parse tree</u>)
- The four key operations in bottom-up parsing are <u>shift</u>, <u>reduce</u>, <u>accept</u> and <u>error</u>.
- Bottom-up parsing is also referred to as shift-reduce parsing.
- Important thing to note is to know when to shift and when to reduce and to which reduce.

Example of Bottom-up Parsing

STACK	INPUT BUFFER	ACTION
\$	num1+num2*num3\$	shift
\$num1	+num2*num3\$	reduc E->E+T
\$F	+num2*num3\$	reduc T
\$T	+num2*num3\$	reduc E-T
\$E	+num2*num3\$	shift
\$E+	num2*num3\$	shift T/F
\$E+num2	*num3\$	reduc $F \rightarrow (E)$
\$E+F	*num3\$	reduc id
\$E+T	*num3\$	shift -E
E+T*	num3\$	shift num
E+T*num3	\$	reduc
E+T*F	\$	reduc
E+T	\$	reduc
E	\$	accept