


Parsing  
•  A grammar describes syntactically legal strings 

in a language 
•  A recogniser simply accepts or rejects strings 
•  A generator produces strings 
•  A parser constructs a parse tree for a string 
•  Two common types of parsers: 

– bottom-up or data driven 
– top-down or hypothesis driven 

•  A recursive descent parser easily implements a 
top-down parser for simple grammars 



Top down vs. bottom up parsing 
• The parsing problem is to connect the root 

node S with the tree leaves, the input 
• Top-down parsers: starts constructing 

the parse tree at the top (root) and move 
down towards the leaves. Easy to implement by 
hand, but requires restricted grammars. E.g.:  
-  Predictive parsers (e.g., LL(k)) 

• Bottom-up parsers: build nodes on the bottom of 
the parse tree first. Suitable for automatic parser 
generation, handles larger class of grammars. E.g.: 
– shift-reduce parser (or LR(k) parsers) 

• Both are general techniques that can be made to 
work for all languages (but not all grammars!). 
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Top down vs. bottom up parsing 

• Both are general techniques that can be made to work 
for all languages (but not all grammars!) 

• Recall that a given language can be described by 
several grammars 

• Both of these grammars describe the same language 

E -> E + Num 
E -> Num 

E -> Num + E 
E -> Num 

• The first one, with it’s left recursion, causes 
problems for top down parsers 

• For a given parsing technique, we may have to 
transform the grammar to work with it 



•  How hard is the parsing task?  How to we measure that? 
•  Parsing an arbitrary CFG is O(n3) --  it can take time propor-

tional the cube of the number  of input symbols 
•  This is bad!  (why?) 

•  If we constrain the grammar somewhat, we can always parse 
in linear time.  This is good!  (why?) 

•  Linear-time parsing 
– LL parsers  

• Recognize LL grammar 
• Use a top-down strategy 

– LR parsers 
• Recognize LR grammar 
• Use a bottom-up strategy 

Parsing complexity 

•  LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols. 

•  LR(n) : Left to right, 
Right derivation, 
look ahead at most n 
symbols. 



Top Down Parsing Methods 
• Simplest method is a full-backup, recur-

sive descent parser 
• Often used for parsing simple languages 
• Write recursive recognizers (subroutines) 

for each grammar rule 
– If rules succeeds perform some action 

(i.e., build a tree node, emit code, etc.) 
– If rule fails, return failure.  Caller may 

try another choice or fail 
– On failure it “backs up”  



Top Down Parsing Methods: Problems 

• When going forward, the parser consumes 
tokens from the input, so what happens if 
we have to back up? 
– suggestions? 

• Algorithms that use backup tend to be, in 
general, inefficient 
– There might be a large number of possibilities 

to try before finding the right one or giving up 
• Grammar rules which are left-recursive 

lead to non-termination! 



Recursive Decent Parsing: Example 
For the grammar: 

 <term> -> <factor> {(*|/)<factor>}* 

We could use the following recursive 
descent parsing subprogram (this one is 
written in C) 
  void term() {  
    factor();     /* parse first factor*/ 
    while (next_token == ast_code ||  
          next_token == slash_code) { 
      lexical();  /* get next token */ 
      factor();   /* parse next factor */ 
    } 
  }  



Problems 
•  Some grammars cause problems for top 

down parsers 
•  Top down parsers do not work with left-

recursive grammars 
– E.g., one with a rule like: E -> E + T 
– We can transform a left-recursive grammar into 

one which is not 
•  A top down grammar can limit backtracking 

if it only has one rule per non-terminal 
– The technique of rule factoring can be used to 

eliminate multiple rules for a non-terminal 



Left-recursive grammars 

• A grammar is left recursive if it has 
rules like  
X -> X β  

• Or if it has indirect left recursion, as in  
X -> A β 
A -> X 

• Q: Why is this a problem?  
– A: it can lead to non-terminating 

recursion! 



Left-recursive grammars 

• Consider 
E -> E + Num 
E -> Num 

• We can manually or automatically 
rewrite a grammar removing left-
recursion, making it ok for a top-down 
parser. 



Elimination of Left Recursion 
• Consider left-recursive 

grammar 
S → S α 

S -> β 

• S generates strings  
β 
β α 
β  α α   … 

• Rewrite using right-
recursion 
S → β S’ 
S’ → α S’| ε 

• Concretely 
T -> T + id 
T-> id 

• T generates strings 
id 
id+id 
id+id+id   … 

• Rewrite using right-
recursion 
T -> id 
T -> id T 



More Elimination of Left-Recursion 

• In general 
S → S α1 | … | S αn | β1 | … | βm 

• All strings derived from S start with one of 
β1,…,βm and continue with several instances 
of α1,…,αn  

• Rewrite as 
S → β1 S’ | … | βm S’ 

S’ → α1 S’ | … | αn S’ | ε  



General Left Recursion 
•  The grammar  

S → A α | δ 
A → S β 

is also left-recursive because 
S →+ S β α 

where →+ means “can be rewritten in one 
or more steps” 

•  This indirect left-recursion can also be 
automatically eliminated 



Summary of Recursive Descent 

•  Simple and general parsing strategy 
– Left-recursion must be eliminated first 
– … but that can be done automatically 

•  Unpopular because of backtracking 
– Thought to be too inefficient 

•  In practice, backtracking is eliminated by 
further restricting the grammar to allow us 
to successfully predict which rule to use 



Predictive Parsers 
• That there can be many rules for a non-terminal 

makes parsing hard 
• A predictive parser processes the input stream 

typically from left to right 
– Is there any other way to do it?  Yes for programming 

languages! 
•  It uses information from peeking ahead at the 

upcoming terminal symbols to decide which 
grammar rule to use next 

• And always makes the right choice of which rule 
to use 

• How much it can peek ahead is an issue 



Predictive Parsers 
• An important class of predictive parser only 

peek ahead one token into the stream 
• An an LL(k) parser, does a Left-to-right 

parse, a Leftmost-derivation, and k-symbol 
lookahead 

• Grammars where one can decide which rule 
to use by examining only the next token are 
LL(1) 

• LL(1) grammars are widely used in practice 
– The syntax of a PL can usually be adjusted to 

enable it to be described with an LL(1) grammar 



Predictive Parser 
Example: consider the grammar 

S → if E then S else S 
S → begin S L 
S → print E 
L → end 
L → ; S L 
E → num = num 

An S expression starts either with 
an IF, BEGIN, or PRINT token, 
and an L expression start with an 
END or a SEMICOLON token,  
and an E expression has only one 
production. 



Remember… 
• Given a grammar and a string in the language defined 

by the grammar … 
• There may be more than one way to derive the string 

leading to the same parse tree 
– It depends on the order in which you apply the rules 
– And what parts of the string you choose to rewrite next 

• All of the derivations are valid 
• To simplify the problem and the algorithms, we  often 

focus on one of two simple derivation strategies 
– A leftmost derivation 
– A rightmost derivation 



LL(k) and LR(k) parsers 

• Two important parser classes are  LL(k) and LR(k) 
• The name LL(k) means: 

– L: Left-to-right scanning of the input 
– L: Constructing leftmost derivation 
– k: max # of input symbols needed to predict parser action 

• The name LR(k) means: 
– L: Left-to-right scanning of the input 
– R: Constructing rightmost derivation in reverse 
– k: max # of input symbols needed to select parser action 

• A LR(1) or LL(1) parser never need to “look ahead” 
more than one input token to know what parser 
production rule applies 



Predictive Parsing and Left Factoring 
•  Consider the grammar 

E → T + E 
E → T 
T → int 
T → int * T 
T → ( E ) 

• Hard to predict because 
–  For T, two productions start with int 
–  For E, it is not clear how to predict which rule to use 

• Must left-factored grammar before use for predictive 
parsing 

•  Left-factoring involves rewriting rules so that, if a non-
terminal has > 1 rule, each begins with a terminal 

Even left recursion is 
removed, a grammar 
may not be parsable 
with a LL(1) parser 



Left-Factoring Example 

E → T + E 
E → T 
T → int 
T → int * T 
T → ( E ) 

E → T X 
X → + E 

X → ε  

T → ( E ) 

T → int Y 

Y → * T 

Y → ε  

Add new non-terminals X and Y to factor out 
common prefixes of rules 

For each non-terminal the 
revised grammar, there is either 

only one rule or every rule 
begins with a terminal  or ε  



Left Factoring 
•  Consider a rule of the form 

A => a B1 | a B2 | a B3 | … a Bn                    
•  A top down parser generated from this grammar is not 

efficient as it requires backtracking.  
•  To avoid this problem we left factor the grammar.  

– Collect all productions with the same left hand side and 
begin with the same symbols on the right hand side 

– Combine common strings into a single production and  
append a new non-terminal to end of this new production 

– Create new productions using this new non-terminal for 
each of the suffixes to the common production.  

•  After left factoring the above grammar is transformed into:  
A –> a A1 
A1 -> B1 | B2 | B3 … Bn 



Using Parsing Tables 
• LL(1) means that for each non-terminal and token 

there is only one production 
• Can be represented as a simple table 

– One dimension for current non-terminal to expand 
– One dimension for next token 
– A table entry contains one rule’s action or empty if error 

• Method similar to recursive descent, except 
– For each non-terminal S 
– We look at the next token a 
– And chose the production shown at table cell [S, a] 

• Use a stack to keep track of pending non-terminals 
• Reject when we encounter an error state, accept when 

we encounter end-of-input    



LL(1) Parsing Table Example 
Left-factored grammar 
E → T X                
X → + E | ε  

T → ( E ) | int Y      

Y → * T | ε 

int * + ( ) $ 
E T X T X 

X + E ε ε 
T int Y ( E ) 

Y * T  ε ε ε 

The LL(1) parsing table 

End of input symbol 



LL(1) Parsing Table Example 
• Consider the [E, int] entry 

– “When current non-terminal is E & next input int, use production  E→ T X” 
– It’s the only production that can generate an int in next place 

• Consider the [Y, +] entry 
– “When current non-terminal is Y and current token is +, get rid of Y” 
– Y can be followed by + only in a derivation where  Y→ε 

• Consider the [E, *] entry 
– Blank entries indicate error situations 
– “There is no way to derive a string starting with * from non-terminal E” 

int * + ( ) $ 

E T X T X 

X + E ε ε 
T int Y ( E ) 

Y * T  ε ε ε 

E → T X                
X → + E | ε  

T → ( E ) | int Y      

Y → * T | ε 



LL(1) Parsing Algorithm 
initialize stack = <S $> and next  
repeat 
   case stack of 
      <X, rest>  : if T[X,*next] = Y1…Yn 
                            then stack ← <Y1… Yn rest>; 
                            else  error ();    
      <t, rest>   : if t == *next ++  
                            then  stack ← <rest>; 
                            else error (); 
until stack == < > 

(1) next points to the next input token  
(2) X matches some non-terminal 
(3) t matches some terminal 

where: 



LL(1) Parsing Example 
Stack            Input              Action 
E $           int * int $        pop();push(T X) 

T X $         int * int $        pop();push(int Y) 

int Y X $     int * int $        pop();next++ 
Y X $         * int $            pop();push(* T) 

* T X $       * int $            pop();next++ 

T X $         int $              pop();push(int Y) 

int Y X $     int $              pop();next++; 

Y X $         $                  pop() 
X $           $                  pop() 

$             $                  ACCEPT! 

int * + ( ) $ 
E T X T X 

X + E ε ε 
T int Y ( E ) 

Y * T  ε ε ε 

E → TX                
X → +E 

X → ε   
T → (E) 
T → int Y      

Y → *T 
Y → ε 



Constructing Parsing Tables 
• No table entry can be multiply defined 
• If A → α, where in the line of A we place α ? 
• In column t where t can start a string derived 

from α 
• α →* t β 
• We say that t ∈ First(α) 

• In the column t if α is ε and t can follow an A 
• S →* β A t δ 
• We say t ∈ Follow(A) 



Computing First Sets 
Definition: First(X) = {t| X→*tα}∪{ε|X→*ε} 

Algorithm sketch (see book for details): 
1.  for all terminals t do   First(t)  { t }  
2.  for each production X → ε do  First(X)  { ε } 
3.  if X → A1 … An α  and  ε ∈ First(Ai), 1 ≤ i ≤ n  

do add First(α) to First(X)  
4.  for each X → A1 … An s.t. ε ∈ First(Ai), 1 ≤ i ≤ 

n do add ε to First(X)  
5.  repeat steps 4 and 5 until no First set can be 

grown 



First Sets. Example 
Recall the grammar  

    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 

First sets 
       First( ( ) = { ( }            First( T ) = {int, ( } 
       First( ) ) = { ) }            First( E ) = {int, ( } 
       First( int) = { int }       First( X ) = {+, ε } 
       First( + ) = { + }            First( Y ) = {*, ε } 
       First( * ) = { * }   



Computing Follow Sets 
•  Definition: 
          Follow(X) = { t | S →* β X t δ } 

•  Intuition 
–  If S is the start symbol then $ ∈ Follow(S) 

–  If X → A B then First(B) ⊆ Follow(A) and  
                              Follow(X) ⊆ Follow(B) 
– Also if B →* ε then Follow(X) ⊆ Follow(A) 



Computing Follow Sets 
Algorithm sketch: 

1.  Follow(S)   { $ } 
2.  For each production A → α X β  

•  add  First(β) - {ε}  to  Follow(X)  
3.  For each A → α X β where ε ∈ First(β)  

•  add  Follow(A)  to  Follow(X) 
•  repeat step(s) ___ until no Follow set 

grows 



Follow Sets. Example 
•  Recall the grammar  

    E → T X                               X → + E | ε  
    T → ( E ) | int Y                   Y → * T | ε 

•  Follow sets 
    Follow( + ) = { int, ( }    Follow( * ) = { int, ( }  
    Follow( ( ) = { int, ( }     Follow( E ) = {), $}  
    Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $} 
    Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $} 
    Follow( int) = {*, +, ) , $}   



Constructing LL(1) Parsing Tables 
•  Construct a parsing table T for CFG G 
•  For each production  A → α in G do: 

– For each terminal t ∈ First(α) do 
• T[A, t] = α  

–  If ε ∈ First(α), for each t ∈ Follow(A) do 
• T[A, t] = α 

–  If ε ∈ First(α) and $ ∈ Follow(A) do 
• T[A, $] = α  



Notes on LL(1) Parsing Tables 

• If any entry is multiply defined then G is not 
LL(1) 

• Reasons why a grammar is not LL(1) include 
– G is ambiguous 
– G is left recursive 
– G is not left-factored 

• Most programming language grammars are not 
strictly LL(1) 

• There are tools that build LL(1) tables 



Bottom-up Parsing 

•  YACC uses bottom up parsing. There are 
two important operations that bottom-up 
parsers use: shift and reduce 
–  In abstract terms, we do a simulation of a 

Push Down Automata as a finite state automata 
•  Input: given string to be parsed and the set 

of productions. 
•  Goal: Trace a rightmost derivation in 

reverse by starting with the input string and 
working backwards to the start symbol 



Algorithm 
1. Start with an empty stack and a full input buffer. (The string to be 

parsed is in the input buffer.) 
2. Repeat until the input buffer is empty and the stack contains the start 

symbol. 
 a. Shift zero or more input symbols onto the stack from input buffer 
until a handle (beta) is found on top  of the stack. If no handle is found 
report syntax error and exit. 

 b. Reduce handle to the nonterminal A. (There is a production A -> 
beta) 

3. Accept input string and return some representation of the derivation 
sequence found (e.g.., parse tree) 

•  The  four key operations in bottom-up parsing are  shift, reduce, accept 
and error. 

•  Bottom-up parsing is also referred to as shift-reduce parsing. 
•  Important thing to note is to know when to shift and when to reduce and 

to which reduce. 



STACK  INPUT BUFFER  ACTION 
$   num1+num2*num3$  shift 

$num1  +num2*num3$  reduc 

$F   +num2*num3$  reduc 
$T   +num2*num3$  reduc 

$E   +num2*num3$  shift 

$E+   num2*num3$   shift 

$E+num2  *num3$   reduc 

$E+F   *num3$   reduc 
$E+T   *num3$   shift 

E+T*   num3$   shift 

E+T*num3  $    reduc 

E+T*F  $    reduc 

E+T   $    reduc 
E   $    accept 

Example of Bottom-up Parsing 

E -> E+T  
        | T 
        | E-T 
T -> T*F  
        | F 
        | T/F 
F -> (E)  
         | id  
         | -E  
         num 


