$4 b$

Lexical analysis Finite Automata

Finite Automata (FA)

- FA also called Finite State Machine (FSM)
- Abstract model of a computing entity.
- Decides whether to accept or reject a string.
- Every regular expression can be represented as a FA and vice versa
- Two types of FAs:
- Non-deterministic (NFA): Has more than one alternative action for the same input symbol.
- Deterministic (DFA): Has at most one action for a given input symbol.
- Example: how do we write a program to recognize the Java keyword "int"?

RE and Finite State Automaton (FA)

- Regular expressions are a declarative way to describe the tokens
- Describes what is a token, but not how to recognize the token
- FAs are used to describe how the token is recognized
- FAs are easy to simulate in a programs
- There is a $1-1$ correspondence between FAs \& regular expressions
- A scanner generator (e.g., lex) bridges the gap between regular expressions and FAs.

Inside scanner generator

Main components of scanner generation (e.g., Lex)

- Convert a regular expression to a non-deterministic finite automaton (NFA)
- Convert the NFA to a determinstic finite automaton (DFA)
- Improve the DFA to minimize the number of states
- Generate a program in C or some other language to "simulate" the DFA

Non-deterministic Finite Automata (FA)

- NFA (Non-deterministic Finite Automaton) is a 5-tuple (S, $\Sigma, \delta, S 0, F)$:
- S: a set of states;
$-\quad \Sigma$: the symbols of the input alphabet;
$-\delta:$ a set of transition functions;
$» \operatorname{move}($ state, symbol) \rightarrow a set of states
- S0: s0 $\in S$, the start state;
$-\quad F: F \subseteq S$, a set of final or accepting states.
- Non-deterministic -- a state and symbol pair can be mapped to a set of states.
- Finite-the number of states is finite.

Transition Diagram

- FA can be represented using transition diagram.
- Corresponding to FA definition, a transition diagram has:
- States represented by circles;
- An Alphabet (Σ) represented by labels on edges;
- Transitions represented by labeled directed edges between states. The label is the input symbol;
- One Start State shown as having an arrow head;
- One or more Final State(s) represented by double circles.
- Example transition diagram to recognize (a|b)*abb

Simple examples of FA

Procedures of defining a DFA/NFA

- Defining input alphabet and initial state
- Draw the transition diagram
- Check
- Do all states have out-going arcs labeled with all the input symbols (DFA)
- Any missing final states?
- Any duplicate states?
- Can all strings in the language can be accepted?
- Are any strings not in the language accepted?
- Naming all the states
- Defining (S, $\left.\Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

Example of constructing a FA

- Construct a DFA that accepts a language L over the alphabet $\{0,1\}$ such that L is the set of all strings with any number of " 0 "s followed by any number of " 1 "s.
- Regular expression: $0^{*} 1^{*}$
- $\Sigma=\{0,1\}$
- Draw initial state of the transition diagram

Start

Example of constructing a FA

- Draft the transition diagram

- Is "111" accepted?
- The leftmost state has missed an arc with input " 1 "

Example of constructing a FA

- Is " 00 " accepted?
- The leftmost two states are also final states
- First state from the left: ε is also accepted
- Second state from the left: strings with " 0 "s only are also accepted

Example of constructing a FA

- The leftmost two states are duplicate
- their arcs point to the same states with the same symbols

- Check that they are correct
- All strings in the language can be accepted
$» \varepsilon$, the empty string, is accepted
» strings with " 0 "s / " 1 "s only are accepted
- No strings not in language are accepted
- Naming all the states

How does a FA work

- NFA definition for (a|b)*abb
$-\mathrm{S}=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}$
- $\quad \Sigma=\{\mathrm{a}, \mathrm{b}\}$

- Transitions: $\operatorname{move}(q 0, a)=\{q 0, q 1\}, \operatorname{move}(q 0, b)=\{q 0\}, \ldots$.
$-\mathrm{s} 0=\mathrm{q} 0$
$-\mathrm{F}=\{\mathrm{q} 3\}$
- Transition diagram representation
- Non-determinism:
» exiting from one state there are multiple edges labeled with same symbol, or
» There are epsilon edges.
- How does FA work? Input: ababb

```
move(0, a) = 1
move(1, b) = 2
move(2, a) = ? (undefined)
```

REJECT !

```
move(0, a) = 0
move(0,b) = 0
move(0, a)=1
move(1, b)=2
move(2, b) = 3
ACCEPT!
```


FA for (a|b)*abb

- What does it mean that a string is accepted by a FA?

An FA accepts an input string x iff there is a path from start to a final state, such that the edge labels along this path spell out x;

- A path for "aabb": $\mathrm{Q} 0 \rightarrow^{a} q 0 \rightarrow^{a} q 1 \rightarrow^{b} q 2 \rightarrow^{b} q 3$
- Is "aab" acceptable?

$$
\begin{aligned}
& \mathrm{Q} 0 \rightarrow \rightarrow^{\mathrm{a}} \mathrm{q0} \rightarrow^{\mathrm{a}} \mathrm{q} 1 \rightarrow^{\mathrm{b}} \mathrm{q} 2 \\
& \mathrm{Q} 0 \rightarrow^{\mathrm{a}} \mathrm{q0} \rightarrow^{\mathrm{a}} \mathrm{q} 0 \rightarrow{ }^{\mathrm{b}} \mathrm{q} 0
\end{aligned}
$$

$»$ Final state must be reached;
»In general, there could be several paths.

- Is "aabbb" acceptable?

$$
\mathrm{Q} 0 \rightarrow^{\mathrm{a}} \mathrm{q} 0 \rightarrow^{\mathrm{a}} \mathrm{q} 1 \rightarrow^{\mathrm{b}} \mathrm{q} 2 \rightarrow^{\mathrm{b}} \mathrm{q} 3
$$

»Labels on the path must spell out the entire string.

Transition table

- A transition table is a good way to implement a FSA
- One row for each state, S
- One column for each symbol, A
- Entry in cell (S,A) gives set of states can be reached from state S on input A
- A Nondeterministic Finite Automaton (NFA) has at least one cell with more than one state
- A Deterministic Finite Automaton (DFA) has a singe state in every cell
(a|b)*abb

STATES	INPUT	
	\mathbf{a}	b
$>$ Q0	$\{\mathrm{q} 0, \mathrm{q} 1\}$	q 0
Q1		q 2
Q2		q 3
${ }^{*}$ Q3		

DFA (Deterministic Finite Automaton)

- A special case of NFA where the transition function maps the pair (state, symbol) to one state.
- When represented by transition diagram, for each state S and symbol a, there is at most one edge labeled a leaving S;
- When represented transition table, each entry in the table is a single state.
- There are no ε-transition
- Example: DFA for (a|b)*abb

STATES	INPUT	
	a	b
q 0	q 1	q 0
q 1	q 1	q 2
q 2	q 1	q 3
q 3	q 1	q 0

- Recall the NFA:

DFA to program

- NFA is more concise, but not as easy to implement;
- In DFA, since transition tables don't have any alternative options, DFAs are easily simulated via an algorithm.
- Every NFA can be converted to an equivalent DFA
- What does equivalent mean?
- There are general algorithms that can, take a DFA and produce a "minimal" DFA.
- Minimal in what sense?
- There are programs that take a regular expression and produce a program based on a minimal DFA to recognize strings defined by the RE.
- You can find out more in 451 (automata theory) and/or 431
 (Compiler design)

