
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Concepts

• Overview of syntax and semantics
•  Step one: lexical analysis

– Lexical scanning
– Regular expressions
– DFAs and FSAs
– Lex

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

This is an overview of the standard
process of turning a text file into an
executable program.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lexical analysis in perspective

LEXICAL ANALYZER
–  Scans Input
–  Removes whitespace, newlines, …
–  Identifies Tokens
–  Creates Symbol Table
–  Inserts Tokens into symbol table
–  Generates Errors
–  Sends Tokens to Parser

lexical
analyzer parser

symbol table

source
program

token

get next
token

PARSER
–  Performs Syntax Analysis

–  Actions Dictated by Token Order

–  Updates Symbol Table Entries

–  Creates Abstract Rep. of Source

–  Generates Errors

LEXICAL ANALYZER: Transforms character stream to token stream
–  Also called scanner, lexer, linear analysis

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Where we are

Total=price+tax;

Total = price + tax ;

Lexical analyzer

Parser

price

id + id

 Expr

 assignment

 = id

tax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Basic lexical analysis terms
•  Token

–  A classification for a common set of strings
–  Examples: <identifier>, <number>, <operator>, <open

paren>, etc.

•  Pattern
–  The rules which characterize the set of strings for a token
–  Recall file and OS wildcards (*.java)

•  Lexeme
–  Actual sequence of characters that matches pattern and is

classified by a token
–  Identifiers: x, count, name, etc…
–  Integers: -12, 101, 0, …

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Examples of token, lexeme and pattern
if (price + gst – rebate <= 10.00) gift := false

Token lexeme Informal description of pattern

if if if
Lparen ((
Identifier price String consists of letters and numbers and starts with a letter

operator + +

identifier gst String consists of letters and numbers and starts with a letter
operator - -

identifier rebate String consists of letters and numbers and starts with a letter
Operator <= Less than or equal to
constant 10.00 Any numeric constant
rparen))
identifier gift String consists of letters and numbers and starts with a letter

Operator := Assignment symbol
identifier false String consists of letters and numbers and starts with a letter

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression (REs)
•  Scanners are based on regular expressions that

define simple patterns
•  Simpler and less expressive than BNF
•  Examples of a regular expression

letter: a|b|c|...|z|A|B|C...|Z
digit: 0|1|2|3|4|5|6|7|8|9
identifier: letter (letter | digit)*

•  Basic operations are (1) set union, (2)
concatenation and (3) Kleene closure

•  Plus: parentheses, naming patterns
•  No recursion!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression (REs)
Example
letter: a|b|c|...|z|A|B|C...|Z
digit: 0|1|2|3|4|5|6|7|8|9
identifier: letter (letter | digit)*

letter (letter | digit) *

letter (letter | digit) *

letter (letter | digit) *

concatenation: one pattern
followed by another

set union: one pattern or
another

Kleene closure: zero or more
repetions of a pattern

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.
Regular expressions are extremely useful in many applications. Mastering them will serve you well.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Formal language operations

Operation Notation Definition
Example

L={a, b} M={0,1}

union of L and M L ∪ M L ∪ M = {s | s is in L or s
is in M} {a, b, 0, 1}

concatenation of
L and M

LM LM = {st | s is in L and t is
in M} {a0, a1, b0, b1}

Kleene closure
of L

L* L* denotes zero or more
concatenations of L

All the strings consists of “a”
and “b”, plus the empty
string. {ε, a, b, aa, bb, ab, ba,
aaa, …}

positive closure L+ L+ denotes “one or more
concatenations of “ L

All the strings consists of “a”
and “b”. {a, b, aa, bb, ab, ba,
aaa, …}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression
• Let Σ be an alphabet, r a regular expression then L(r) is

the language that is characterized by the rules of r
• Definition of regular expression

– ε is a regular expression that denotes the language {ε}
–  If a is in Σ, a is a regular expression that denotes {a}
– Let r & s be regular expressions with languages L(r) & L(s)

»  (r) | (s) is a regular expression L(r) ∪ L(s)
»  (r)(s) is a regular expression L(r) L(s)
»  (r)* is a regular expression (L(r))*

•  It is an inductive definition!
• A regular language is a language that can be defined by

a regular expression

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression example revisited

•  Examples of regular expression
Letter: a|b|c|...|z|A|B|C...|Z
Digit: 0|1|2|3|4|5|6|7|8|9
Identifier: letter (letter | digit)*

•  Q: why it is an regular expression?
– Because it only uses the operations of union,

concatenation and Kleene closure
•  Being able to name patterns is just syntactic sugar
•  Using parentheses to group things is just syntactic

sugar provided we specify the precedence and
associatively of the operators (i.e., |, * and “concat”)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another common operator: +

•  The + operator is commonly used to mean “one
or more repetitions” of a pattern

•  For example, letter+ means one or more letters
• We can always do without this, e.g.

letter+ is equivalent to letter letter*
•  So the + operator is just syntactic sugar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Precedence of operators
In interpreting a regular expression
•  Parens scope sub-expressions
•  * and + have the highest precedence
•  Concanenation comes next
•  | is lowest.
•  All the operators are left associative
•  Example

–  (A) | ((B)* (C)) is equivalent to A | B * C
–  What strings does this generate or match?

Either an A or any number of Bs followed by a C

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Epsilon

•  Sometimes we’d like a token that represents
nothing

•  This makes a regular expression matching
more complex, but can be useful

• We use the lower case Greek letter epsilon, ε,
for this special token

•  Example:
digit: 0|1|2|3|4|5|6|7|8|9|0
sign: +|-|ε
int: sign digit+

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Properties of regular expressions

Property Description

r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative

(rs)t=r(st) Concatenation is associative

r(s|t)=rs | rt
(s|t)r=sr | tr

Concatenation distributes over |

... ...

We can easily determine some basic
properties of the operators involved in
building regular expressions

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Notational shorthand of regular expression
•  One or more instance

–  L+ = L L*
–  L* = L+ | ε
–  Examples

»  digits: digit digit*
»  digits: digit+

•  Zero or one instance
–  L? = L|ε
–  Examples

»  Optional_fraction.digits|ε
»  optional_fraction(.digits)?

•  Character classes
–  [abc] = a|b|c
–  [a-z] = a|b|c...|z

More syntatic sugar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular grammar and regular expression

•  They are equivalent
– Every regular expression can be expressed by regular grammar
– Every regular grammar can be expressed by regular expression

•  Example
– An identifier must begin with a letter and can be followed by

arbitrary number of letters and digits.

Regular expression Regular grammar

ID: LETTER (LETTER | DIGIT)* ID LETTER ID_REST
ID_REST LETTER ID_REST
 | DIGIT ID_REST
 | EMPTY

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Formal definition of tokens
•  A set of tokens is a set of strings over an alphabet

{read, write, +, -, *, /, :=, 1, 2, …, 10, …, 3.45e-3, …}
•  A set of tokens is a regular set that can be defined by

using a regular expression
•  For every regular set, there is a finite automaton (FA)

that can recognize it
– Aka deterministic Finite State Machine (FSM)
– i.e. determine whether a string belongs to the set or

not
– Scanners extract tokens from source code in the

same way DFAs determine membership

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

FSM = FA
•  Finite state machine and finite automaton are

different names for the same concept
•  The basic concept is important and useful in

almost every aspect of computer science
•  The concept provides an abstract way to

describe a process that
– Has a finite set of states it can be in
– Gets a sequence of inputs
– Each input causes the process to go from its current state to a

new state (which might be the same!)
–  If after the input ends, we are in one of a set of accepting

state, the input is accepted by the FA

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example
This example shows a FA that determines whether a binary
number has an odd or even number of 0's, where S1 is an
accepting state.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Deterministic finite automaton (DFA)
•  In a DFA there is only one choice for a given input in every

state
•  There are no states with two arcs that match the same

input that transition to different states

Is this a DFA?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Deterministic finite automaton (DFA)
•  If there is an input symbol that matches no arc for the

current state, the input is not accepted
•  This FA accepts only binary numbers that are multiples of

three
•  S0 is both the start state and an accept state.

Is this a DFA?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

REs can be represented as DFAs
Regular expression for a simple identifier
Letter: a|b|c|...|z|A|B|C...|Z
Digit: 0|1|2|3|4|5|6|7|8|9
Identifier: letter (letter | digit)*

* letter!

letter!

0,1,2,3,4…9!
•  Incoming arrow identifies a single start state
•  * marks a possible final (accepting) state
• State transitions enabled by input
• Arcs represent transitions and are labeled

with required input

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

REs can be represented as DFAs
Regular expression for a simple identifier
Letter: a|b|c|...|z|A|B|C...|Z
Digit: 0|1|2|3|4|5|6|7|8|9
Identifier: letter (letter | digit)*

letter!

letter!

0,1,2,3,4…9!
•  Incoming arrow identifies a single start state
•  * marks a possible final (accepting) state
• State transitions enabled by input
• Arcs represent transitions and are labeled

with required input

An alternate notation
Uses a double circle
For an accepting state

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DIG

Token Definition Example
Numeric literals in Pascal, e.g.

1, 123, 3.1415, 10e-3, 3.14e4
Definition of token unsignedNum

DIG → 0|1|2|3|4|5|6|7|8|9
unsignedInt → DIG DIG*
unsignedNum →
 unsignedInt
 ((. unsignedInt) | ε)
 ((e (+ | – | ε) unsignedInt) | ε)

Note:
– Recursion restricted to leftmost or

rightmost position on LHS
–  Parentheses used to avoid

ambiguity
–  It’s always possible to rewrite by

removing epsilons (ε)

*

*

DIG

DIG

DIG

DIG

.

* DIG

e

+
-

DIG

• Accepting states marked with a *
• FAs with epsilons are nondeterministic
• NFAs are harder to implement, use
backtracking

• Every NFA can be rewritten as a DFA
(gets larger, tho)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Simple Problem

•  Write a C program which reads in a character string, consisting
of a’s and b’s, one character at a time. If the string contains a
double aa, then print string accepted else print string rejected.

•  An abstract solution to this can be expressed as a DFA
a

1 3+ b

b

a a, b 2
Start state An accepting state

The state transitions of a
DFA can be encoded as a
table which specifies the
new state for a given current
state and input

2 1
3 1
3 3

a b
1
2
3

input

current
state

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

#include <stdio.h>
main()
{ enum State {S1, S2, S3};
 enum State currentState = S1;
 int c = getchar();
 while (c != EOF) {
 switch(currentState) {
 case S1: if (c == ‘a’) currentState = S2;
 if (c == ‘b’) currentState = S1;
 break;
 case S2: if (c == ‘a’) currentState = S3;
 if (c == ‘b’) currentState = S1;
 break;
 case S3: break;
 }
 c = getchar();
 }
 if (currentState == S3) printf(“string accepted\n”);
 else printf(“string rejected\n”);
}

one approach
in C

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

#include <stdio.h>
main()
{ enum State {S1, S2, S3};
 enum Label {A, B};
 enum State currentState = S1;
 enum State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};
 int label;
 int c = getchar();
 while (c != EOF) {
 if (c == ‘a’) label = A;
 if (c == ‘b’) label = B;
 currentState = table[currentState][label];
 c = getchar();
 }
 if (currentState == S3) printf(“string accepted\n”);
 else printf(“string rejected\n”);
}

using a table
simplifies the
program

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex
•  Lexical analyzer generator

–  It writes a lexical analyzer
•  Assumption

– each token matches a regular expression
•  Needs

– set of regular expressions
–  for each expression an action

•  Produces
– A C program

•  Automatically handles many tricky problems
•  flex is the gnu version of the venerable unix tool lex.

– Produces highly optimized code

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Scanner Generators
• E.g. lex, flex
• These programs take

a table as their input
and return a program
(i.e. a scanner) that
can extract tokens
from a stream of
characters

• A very useful
programming utility,
especially when
coupled with a parser
generator (e.g., yacc)

•  standard in Unix

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex example

lex cc foolex
foo.l foolex.c foolex

tokens

input

> flex -ofoolex.c foo.l
> cc -ofoolex foolex.c -lfl

>more input
begin
 if size>10
 then size * -3.1415
end

> foolex < input
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Examples

• The examples to follow can be access on gl
• See /afs/umbc.edu/users/f/i/finin/pub/lex

% ls -l /afs/umbc.edu/users/f/i/finin/pub/lex!
total 8!
drwxr-xr-x 2 finin faculty 2048 Sep 27 13:31 aa!
drwxr-xr-x 2 finin faculty 2048 Sep 27 13:32 defs!
drwxr-xr-x 2 finin faculty 2048 Sep 27 11:35 footranscanner!
drwxr-xr-x 2 finin faculty 2048 Sep 27 11:34 simplescanner!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A Lex Program

… definitions …
%%
… rules …
%%
… subroutines …

DIG [0-9]
ID [a-z][a-z0-9]*
%%
{DIG}+ printf("Integer\n”);
{DIG}+"."{DIG}* printf("Float\n”);
{ID} printf("Identifier\n”);
[\t\n]+ /* skip whitespace */
. printf(“Huh?\n");
%%
main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Simplest Example

%%
.|\n ECHO;
%%
main()
{
 yylex();
}

• No definitions
• One rule
• Minimal wrapper
• Echoes input

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

%%
(a|b)*aa(a|b)* {printf("Accept %s\n", yytext);}

[a|b]+ {printf("Reject %s\n", yytext);}

.|\n ECHO;
%%
main() {yylex();}

Strings containing aa

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Rules
• Each has a rule has a pattern and an action
• Patterns are regular expression
• Only one action is performed

– The action corresponding to the pattern matched
is performed

– If several patterns match the input, the one
corresponding to the longest sequence is chosen

– Among the rules whose patterns match the same
number of characters, the rule given first is
preferred

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Definitions
• The definitions block allows you to name a RE
•  If the name appears in curly braces in a rule, the RE

will be substituted

DIG [0-9]!

%%!

{DIG}+ printf("int: %s\n", yytext);!
{DIG}+"."{DIG}* printf("float: %s\n", yytext); !
. /* skip anything else */!

%%!

main(){yylex();}!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

/* scanner for a toy Pascal-like language */
%{
#include <math.h> /* needed for call to atof() */
%}
DIG [0-9]
ID [a-z][a-z0-9]*
%%
{DIG}+ printf("Integer: %s (%d)\n", yytext, atoi(yytext));
{DIG}+"."{DIG}* printf("Float: %s (%g)\n", yytext, atof(yytext));
if|then|begin|end printf("Keyword: %s\n",yytext);
{ID} printf("Identifier: %s\n",yytext);
"+"|"-"|"*"|"/" printf("Operator: %s\n",yytext);
"{"[^}\n]*"}" /* skip one-line comments */
[\t\n]+ /* skip whitespace */
. printf("Unrecognized: %s\n",yytext);
%%
main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

x character 'x'
. any character except newline
[xyz] character class, in this case, matches either an 'x', a 'y', or a 'z'
[abj-oZ] character class with a range in it; matches 'a', 'b', any letter

from 'j' through 'o', or 'Z'
[^A-Z] negated character class, i.e., any character but those in the

class, e.g. any character except an uppercase letter.
[^A-Z\n] any character EXCEPT an uppercase letter or a newline
r* zero or more r's, where r is any regular expression
r+ one or more r's
r? zero or one r's (i.e., an optional r)
{name} expansion of the "name" definition
"[xy]\"foo" the literal string: '[xy]"foo' (note escaped ")
\x if x is an 'a', 'b', 'f', 'n', 'r', 't', or 'v', then the ANSI-C

interpretation of \x. Otherwise, a literal 'x' (e.g., escape)
rs RE r followed by RE s (e.g., concatenation)
r|s either an r or an s
<<EOF>> end-of-file

Flex’s RE syntax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

