
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Semantics Overview
• Syntax is about form and semantics meaning

– Boundary between syntax & semantics is not always clear

• First we’ll motivate why semantics matters
• Then we’ll look at issues close to the syntax end

(e.g., static semantics) and attribute grammars
• Finally we’ll sketch three approaches to defining

“deeper” semantics:
(1) Operational semantics
(2) Axiomatic semantics
(3) Denotational semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Motivation
•  Capturing what a program in some

programming language means is very difficult
• We can’t really do it in any practical sense

– For most work-a-day programming
languages (e.g., C, C++, Java, Perl, C#,
Python)

– For large programs
•  So, why is worth trying?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Motivation: Some Reasons
• How to convey to the programming language

compiler/interpreter writer what she should do?
– Natural language may be too ambiguous

• How to know that the compiler/interpreter did
the right thing when it executed our code?
– We can’t answer this w/o a very solid idea of what

the right thing is

• How to be sure that the program satisfies its
specification?
– Maybe we can do this automatically if we know

what the program means

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Program Verification

•  Program verification is the process of formally
proving that the computer program does exactly
what is stated in the program’s specification

•  Program verification can be done for simple
programming languages and small or moderately
sized programs

•  It requires a formal specification for what the
program should do – e.g., its inputs and the actions
to take or output to generate given the inputs

•  That’s a hard task in itself!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Program Verification

•  There are applications where it is worth it to
(1)  use a simplified programming language
(2)  work out formal specs for a program
(3)  capture the semantics of the simplified PL and
(4)  do the hard work of putting it all together and

proving program correctness.
• What are they?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Program Verification
•  There are applications where it is worth it to (1) use a

simplified programming language, (2) work out formal
specs for a program, (3) capture the semantics of the
simplified PL and (4) do the hard work of putting it all
together and proving program correctness. Like…

•  Security and encryption
•  Financial transactions
•  Applications on which lives depend (e.g., healthcare,

aviation)
•  Expensive, one-shot, un-repairable applications (e.g.,

Martian rover)
•  Hardware design (e.g. Pentium chip)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Double Int kills Ariane 5

• It took the European Space Agency
10 years and $7B to produce
Ariane 5, a giant rocket capable of
hurling a pair of three-ton satellites
into orbit with each launch and
intended to give Europe supremacy
in the commercial space business

• All it took to explode the rocket less
than a minute into its maiden voyage
in 1996 was a small computer program trying to
stuff a 64-bit number into a 16-bit space.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Intel Pentium Bug
•  In the mid 90’s a bug was found in

the floating point hardware in Intel’s
latest Pentium microprocessor

• Unfortunately, the bug was only found
after many had been made and sold

•  The bug was subtle, effecting only the ninth
decimal place of some computations

•  But users cared
•  Intel had to recall the chips, taking a $500M

write-off
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

So…
•  While automatic program verification is a

long range goal …
•  Which might be restricted to applications

where the extra cost is justified
•  We should try to design programming

languages that help, rather than hinder, our
ability to make progress in this area.

•  We should continue research on the
semantics of programming languages …

•  And the ability to prove program correctness

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Semantics
• Next we’ll look at issues close to the syntax

end, what some calls static semantics, and
the technique of attribute grammars.

• Then we’ll sketch three approaches to
defining “deeper” semantics
(1) Operational semantics
(2) Axiomatic semantics
(3) Denotational semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Static semantics covers some language features
difficult or impossible to handle in a BNF/CFG

•  It’s also a mechanism for building a parser that
produces an abstract syntax tree of its input

• Attribute grammars are one common technique
• Categories attribute grammars can handle:
- Context-free but cumbersome (e.g., type

checking)
- Non-context-free (e.g., variables must be

declared before they are used)

Static Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

•  Parse trees follow a grammar and usually have many nodes that
are artifacts of how the grammar was written

•  An abstract syntax tree (AST) eliminates useless structural nodes
•  It uses nodes corresponding to constructs in the programming

language and is easier to interpret or generate code from it
•  Consider 1 + 2 + 3:

Parse tree vs. abstract syntax tree

int!

3!int!

2!int!

1!

e!

e! +! int!e!

e! +! int!e!

int!

parse tree

1!

+!

e! int!+!

e! int!int!

2!

3!

an AST

1!

+!

e!+!

2!

3!

another AST
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammars
• Attribute Grammars (AGs) were developed

by Donald Knuth in ~1968
• Motivation:

• CFGs can’t describe all of the syntax of
programming languages

• Additions to CFGs to annotate the parse
tree with some “semantic” info

• Primary value of AGs:
• Static semantics specification
• Compiler design (static semantics checking)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammar Example
• Ada has this rule to describe procedure definitions:

<proc> => procedure <prName> <prBody> end <prName> ;

• The name after procedure must be the same as the
name after end

• This is not possible to capture in a CFG (in practice)
because there are too many names

• Solution: annotate parse tree nodes with attributes and
add a “semantic” rules or constraints to the syntactic
rule in the grammar
rule:	 	 	 	 <proc> => procedure <prName>[1] <prBody> end <prName>[2] ;
constraint:	 <prName>[1].string == <prName>[2].string

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammars

Def: An attribute grammar is a CFG
G=(S,N,T,P)

with the following additions:
– For each grammar symbol x there is a set A(x) of

attribute values
– Each rule has a set of functions that define certain

attributes of the non-terminals in the rule
– Each rule has a (possibly empty) set of predicates

to check for attribute consistency

A Grammar is formally defined by
specifying four components.

•  S is the start symbol
•  N is a set of non-terminal symbols
•  T is a set of terminal symbols
•  P is a set of productions or rules

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammars

• Let X0 => X1 ... Xn be a grammar rule

• Functions of the form S(X0) = f(A(X1),...A(Xn)
define synthesized attributes
- i.e., attribute defined by a nodes children

• Functions of the form I(Xj) = f(A(X0),…A(Xn))
for i <= j <= n define inherited attributes
- i.e., attribute defined by parent and siblings

•  Initially, there are intrinsic attributes on the
leaves
- i.e., attribute predefined

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: expressions of the form id + id
• id's can be either int_type or real_type

•  types of the two id's must be the same

•  type of the expression must match its expected type

BNF: <expr> -> <var> + <var>
 <var> -> id

Attributes:
 actual_type - synthesized for <var> and <expr>

 expected_type - inherited for <expr>

Attribute Grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammars
Attribute Grammar:

1. Syntax rule: <expr> -> <var>[1] + <var>[2]
 Semantic rules:
 <expr>.actual_type ← <var>[1].actual_type
 Predicate: !
 <var>[1].actual_type == <var>[2].actual_type
 <expr>.expected_type == <expr>.actual_type

2. Syntax rule: <var> -> id
 Semantic rule:!
 <var>.actual_type ←
 lookup_type (id, <var>)

Compilers usually maintain a
“symbol table” where they
record the names of proce-
dures and variables along
with type type information.
Looking up this information
in the symbol table is a com-
mon operation.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

How are attribute values computed?

• If all attributes were inherited, the tree
could be decorated in top-down order

• If all attributes were synthesized, the tree
could be decorated in bottom-up order

• In many cases, both kinds of attributes are
used, and it is some combination of top-
down and bottom-up that must be used

Attribute Grammars (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammars (continued)

Suppose we process the expression A+B
using rule <expr> -> <var>[1] + <var>[2]

<expr>.expected_type ← inherited from parent
<var>[1].actual_type ← lookup (A, <var>[1])
<var>[2].actual_type ← lookup (B, <var>[2])
<var>[1].actual_type == <var>[2].actual_type
<expr>.actual_type ← <var>[1].actual_type
<expr>.actual_type == <expr>.expected_type

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Attribute Grammar Summary

•  AGs are a practical extension to CFGs that allow us to
annotate the parse tree with information needed for
semantic processing
– e.g., interpretation or compilation

•  We call the annotated tree an abstract syntax tree
– It no longer just reflects the derivation

•  AGs can move information from anywhere in abstract
syntax tree to anywhere else in a controlled way
– Needed for no-local syntactic dependencies (e.g.,

Ada example) and for semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Static vs. Dynamic Semantics
• Attribute grammar is an example of

static semantics (e.g., type checking) that don’t
reason about how things change when a
program is executed

• Understanding what a program means often
requires reasoning about how, for example, a
variable’s value changes

• Dynamic semantics tries to capture this
– E.g., proving that an array index will never be out

of its intended range
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• No single widely acceptable notation or
formalism for describing dynamic
semantics

• Here are three approaches we’ll briefly
examine:
– Operational semantics
– Axiomatic semantics
– Denotational semantics

Dynamic Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Q: How might we define what expression in a
language mean?

• A: One approach is to give a general mechanism
to translate a sentence in L into a set of sentences
in another language or system that is well defined

• For example:
• Define the meaning of computer science terms by

translating them in ordinary English
• Define the meaning of English by showing how to

translate into French
• Define the meaning of French expression by

translating into mathematical logic

Dynamic Semantics

turtles	 all	 the	 way	 down	
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operational Semantics

•  Idea: describe the meaning of a program in
language L by specifying how statements effect
the state of a machine (simulated or actual) when
executed.

• The change in the state of the machine (memory,
registers, stack, heap, etc.) defines the meaning of
the statement

• Similar in spirit to the notion of a Turing Machine
and also used informally to explain higher-level
constructs in terms of simpler ones.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Alan Turing and his Machine
• The Turing machine is an abstract machine

introduced in 1936 by Alan Turing
– Alan Turing (1912 –54) was a British mathematician, logician,

cryptographer, considered a father of modern computer science
•  It can be used to give a

mathematically precise
definition of algorithm
or 'mechanical procedure’

• Concept widely used in theo-
retical computer science,
especially in complexity
theory and the theory of computation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operational Semantics

• This is a common technique

• Here’s how we might explain the meaning of the
for statement in C in terms of a simpler
reference language:

 c statement operational semantics

for(e1;e2;e3) e1;
{<body>} loop: if e2=0 goto exit

 <body>
 e3;
 goto loop
 exit:

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operational Semantics

• To use operational semantics for a high-level
language, a virtual machine in needed

• A hardware pure interpreter is too expensive
• A software pure interpreter also has

problems:
• The detailed characteristics of the particular

computer makes actions hard to understand
• Such a semantic definition would be

machine-dependent

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operational Semantics

A better alternative: a complete computer
simulation
• Build a translator (translates source code to the

machine code of an idealized computer)

• Build a simulator for the idealized computer

Evaluation of operational semantics:
• Good if used informally

• Extremely complex if used formally (e.g. VDL)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Vienna Definition Language

•  VDL was a language developed at
IBM Vienna Labs as a language
for formal, algebraic definition via
operational semantics.

•  It was used to specify the semantics of PL/I
•  See: The Vienna Definition Language, P. Wegner,

ACM Comp Surveys 4(1):5-63 (Mar 1972)
•  The VDL specification of PL/I was very large,

very complicated, a remarkable technical
accomplishment, and of little practical use.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The Lambda Calculus
•  The first use of operational semantics was in

the lambda calculus
– A formal system designed to investigate function

definition, function application and recursion
– Introduced by Alonzo Church and Stephen Kleene

in the 1930s
•  The lambda calculus can be called the

smallest universal programming language
•  It’s widely used today as a target for defining

the semantics of a programming language

What’s a calculus, anyway?

“A method of computation or
calculation in a special notation (as
of logic or symbolic logic)” --
Merriam-Webster

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The Lambda Calculus

•  The lambda calculus consists of a single
transformation rule (variable substitution) and
a single function definition scheme

•  The lambda calculus is universal in the sense
that any computable function can be expressed
and evaluated using this formalism

• We’ll revisit the lambda calculus later in the
course

•  The Lisp language is close to the lambda
calculus model

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The Lambda Calculus

•  The lambda calculus
– introduces variables ranging over values
– defines functions by (lambda) abstracting

over variables
– applies functions to values

•  Examples:
simple expression: x + 1
function that adds one to its arg: λx. x + 1
applying it to 2: (λx. x + 1) 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Operational Semantics Summary

•  The basic idea is to define a language’s
semantics in terms of a reference
language, system or machine

•  It’s use ranges from the theoretical (e.g.,
lambda calculus) to the practical (e.g.,
Java Virtual Machine)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Axiomatic Semantics
• Based on formal logic (first order predicate calculus)
• Original purpose: formal program verification
• Approach: Define axioms and inference rules in logic

for each statement type in the language (to allow
transformations of expressions to other expressions)

• The expressions are called assertions and are either
• Preconditions: An assertion before a statement

states the relationships and constraints among
variables that are true at that point in execution

• Postconditions: An assertion following a
statement

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Logic 101
Propositional logic:
Logical constants: true, false
Propositional symbols: P, Q, S, ... that are either true or false
Logical connectives: ∧ (and) , ∨ (or), ⇒ (implies), ⇔ (is equivalent), ¬ (not)

which are defined by the truth tables below.
Sentences are formed by combining propositional symbols, connectives and

parentheses and are either true or false. e.g.: P∧Q ⇔ ¬ (¬P ∨ ¬Q)
First order logic adds
(1) Variables which can range over objects in the domain of discourse
(2) Quantifiers including: ∀ (forall) and ∃ (there exists)
(3) Predicates to capture domain classes and relations
Examples: (∀p) (∀q) p∧q ⇔ ¬ (¬p ∨ ¬q)

 ∀x prime(x) ⇒ ∃y prime(y) ∧ y>x

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• Axiomatic semantics is based on Hoare Logic (after
computer scientists Sir Tony Hoare)

• Based on triples that describe how execution of a
statement changes the state of the computation

• Example: {P} S {Q} where
- P is a logical statement of what’s true before executing S
- Q is a logical expression describing what’s true after

•  In general we can reason forward or backward
- Given P and S determine Q
- Given S and Q determine P

• Concrete example: {x>0} x = x+1 {x>1}

Axiomatic Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A weakest precondition is the least restrictive
precondition that will guarantee the postcondition
Notation:

 {P} Statement {Q}
 precondition postcondition

Example:

{?} a := b + 1 {a > 1}

We often need to infer what the precondition must be for a
given post-condition

One possible precondition: {b>10}
Another: {b>1}
Weakest precondition: {b > 0}

Axiomatic Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• A weakest precondition is the least restrictive
precondition that will guarantee the post-condition

• There are an infinite number of possible
preconditions P? that satisfy

{P?} a := b + 1 {a > 1}
•  Namely b>0, b>1, b>2, b>3, b>4, …
•  The weakest precondition is one that logically is implied

by all of the (other) preconditions
•  b>1 => b>0
•  b>2 => b>0
•  b>3 => b>0
•  …

Weakest Precondition?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Axiomatic Semantics in Use

Program proof process:
• The post-condition for the whole program

is the desired results
• Work back through the program to the first

statement
• If the precondition on the first statement is

the same as (or implied by) the program
specification, the program is correct

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: Assignment Statements
Here’s how we might define a simple assignment
statement of the form x := e in a programming
language.
• {Qx->E} x := E {Q}
• Where Qx->E means the result of replacing all

occurrences of x with E in Q
So from

{Q} a := b/2-1 {a<10}
We can infer that the weakest precondition Q is

b/2-1<1 which can be rewritten as or b<22

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• The Rule of Consequence:

 {P} S {Q}, P’ => P, Q => Q’
 {P'} S {Q'}

• An inference rule for sequences

for a sequence S1 ; S2:

{P1} S1 {P2}
{P2} S2 {P3}

the inference rule is:

 {P1} S1 {P2}, {P2} S2 {P3}
 {P1} S1; S2 {P3}

Axiomatic Semantics
A notation from
symbolic logic for
specifying a rule of
inference with pre-
mise P and conse-
quence Q is

 P
Q

e.g., modus ponens
can be specified as:
 P, P=>Q
 Q

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Conditions
Here’s a rule for a conditional statement

{B ∧ P} S1 {Q}, {¬Β ∧ P} S2 {Q}
{P} if B then S1 else S2 {Q}

And an example of its use for the statement
 {P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as
follows:

The postcondition of S1 and S2 is Q.

The weakest precondition of S1 is x>0 ∧ y>1 and for S2 is x<=0 ∧
y>-1
The rule of consequence and the fact that y>1 ⇒ y>-1 supports the
conclusion
That the weakest precondition for the entire conditional is y>1 .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Conditional Example
Suppose we have:

{P}
If x>0 then y=y-1 else y=y+1
{y>0}

Our rule
{B ∧ P} S1 {Q}, {¬Β ∧ P} S2 {Q}

{P} if B then S1 else S2 {Q}
Consider the two cases:

– x>0 and y>1
– x<=0 and y>-1

•  What is a (weakest) condition that implies both y>1 and y>-1

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Conditional Example

• What is a (weakest) condition that implies both
y>1 and y>-1?

• Well y>1 implies y>-1
•  y>1 is the weakest condition that ensures that

after the conditional is executed, y>0 will be
true.

• Our answer then is this:
{y>1}
If x>0 then y=y-1 else y=y+1
{y>0}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Loops
For the loop construct {P} while B do S end {Q}
the inference rule is:

 {I ∧ B} S {I} _
{I} while B do S {I ∧ ¬B}

where I is the loop invariant, a proposition
necessarily true throughout the loop’s
execution

•  I is true before the loop executes and also
after the loop executes

•  B is false after the loop executes

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A loop invariant I must meet the following conditions:
1. P => I (the loop invariant must be true initially)

2. {I} B {I} (evaluation of the Boolean must not change the validity of I)

3. {I and B} S {I} (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q (if I is true and B is false, Q is implied)

5. The loop terminates (this can be difficult to prove)

•  The loop invariant I is a weakened version of the loop
postcondition, and it is also a precondition.

•  I must be weak enough to be satisfied prior to the beginning of
the loop, but when combined with the loop exit condition, it
must be strong enough to force the truth of the postcondition

Loop Invariants

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for
all of the statements in a language is
difficult

•  It is a good tool for correctness proofs,
and an excellent framework for
reasoning about programs

•  It is much less useful for language users
and compiler writers

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

• A technique for describing the meaning of
programs in terms of mathematical functions on
programs and program components.

• Programs are translated into functions about
which properties can be proved using the standard
mathematical theory of functions, and especially
domain theory.

• Originally developed by Scott and Strachey
(1970) and based on recursive function theory

• The most abstract semantics description method

Denotational Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Denotational Semantics

• The process of building a denotational
specification for a language:
1. Define a mathematical object for each

language entity
2. Define a function that maps instances of the

language entities onto instances of the
corresponding mathematical objects

• The meaning of language constructs are defined
by only the values of the program's variables

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

The difference between denotational and operational
semantics: In operational semantics, the state changes are
defined by coded algorithms; in denotational semantics,
they are defined by rigorous mathematical functions

•  The state of a program is the values of all its current
variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

•  Let VARMAP be a function that, when given a variable
name and a state, returns the current value of the variable

 VARMAP(ij, s) = vj

Denotational Semantics (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example: Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 | <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9
Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)
Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1
 …
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Expressions
 Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> => Mdec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) = undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) = undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

else
 if (<binary_expr>.<operator> = ‘+’ then
 Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr>.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Assignment Statements

 Ma(x := E, s) Δ=
 if Me(E, s) = error
 then error
 else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},
 where for j = 1, 2, ..., n,
 vj’ = VARMAP(ij, s) if ij <> x
 = Me(E, s) if ij = x

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

 Ml(while B do L, s) Δ=

 if Mb(B, s) = undef

 then error

 else if Mb(B, s) = false

 then s

 else if Msl(L, s) = error

 then error

 else Ml(while B do L, Msl(L, s))

Logical Pretest Loops

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Logical Pretest Loops

• The meaning of the loop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors

•  In essence, the loop has been converted from
iteration to recursion, where the recursive control
is mathematically defined by other recursive state
mapping functions

• Recursion, when compared to iteration, is easier to
describe with mathematical rigor

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Evaluation of denotational semantics:

• Can be used to prove the correctness of
programs

• Provides a rigorous way to think about
programs

• Can be an aid to language design

• Has been used in compiler generation
systems

Denotational Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Summary

This lecture we covered the following

• Backus-Naur Form and Context Free
Grammars

•  Syntax Graphs and Attribute Grammars
•  Semantic Descriptions: Operational,

Axiomatic and Denotational

