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Semantics Overview 
• Syntax is about form and semantics meaning 

– Boundary between syntax & semantics is not always clear 

• First we’ll motivate why semantics matters 
• Then we’ll look at issues close to the syntax end 

(e.g., static semantics) and attribute grammars 
• Finally we’ll sketch three approaches to defining 

“deeper” semantics:  
(1) Operational semantics 
(2) Axiomatic semantics 
(3) Denotational semantics 
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Motivation 
•  Capturing what a program in some 

programming language means is very difficult 
• We can’t really do it in any practical sense  

– For most work-a-day programming 
languages (e.g., C, C++, Java, Perl, C#, 
Python) 

– For large programs 
•  So, why is worth trying? 
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Motivation: Some Reasons 
• How to convey to the programming language 

compiler/interpreter writer what she should do? 
– Natural language may be too ambiguous 

• How to know that the compiler/interpreter did 
the right thing when it executed our code? 
– We can’t answer this w/o a very solid idea of what 

the right thing is 

• How to be sure that the program satisfies its 
specification? 
– Maybe we can do this automatically if we know 

what the program means 
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Program Verification 

•  Program verification is the process of formally 
proving that the computer program does exactly 
what is stated in the program’s specification 

•  Program verification can be done for simple 
programming languages and small or moderately 
sized programs 

•  It requires a formal specification for what the 
program should do – e.g., its inputs and the actions 
to take or output to generate given the inputs 

•  That’s a hard task in itself! 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Program Verification 

•  There are applications where it is worth it to 
(1)  use a simplified programming language 
(2)  work out formal specs for a program 
(3)  capture the semantics of the simplified PL and 
(4)  do the hard work of putting it all together and 

proving program correctness. 
• What are they? 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

Program Verification 
•  There are applications where it is worth it to (1) use a 

simplified programming language, (2) work out formal 
specs for a program, (3) capture the semantics of the 
simplified PL and (4) do the hard work of putting it all 
together and proving program correctness. Like… 

•  Security and encryption 
•  Financial transactions 
•  Applications on which lives depend (e.g., healthcare, 

aviation) 
•  Expensive, one-shot, un-repairable applications (e.g., 

Martian rover) 
•  Hardware design (e.g. Pentium chip) 
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Double Int kills Ariane 5 

• It took the European Space Agency  
10 years and $7B to produce 
Ariane 5, a giant rocket capable of 
hurling a pair of three-ton satellites 
into orbit with each launch and 
intended to give Europe supremacy 
in the commercial space business 

• All it took to explode the rocket less 
than a minute into its maiden voyage 
in 1996 was a small computer program trying to 
stuff a 64-bit number into a 16-bit space. 
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Intel Pentium Bug 
•  In the mid 90’s a bug was found in 

the floating point hardware in Intel’s 
latest Pentium microprocessor 

• Unfortunately, the bug was only found 
after many had been made and sold 

•  The bug was subtle, effecting only the ninth 
decimal place of some computations 

•  But users cared 
•  Intel had to recall the chips, taking a $500M 

write-off 
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So… 
•  While automatic program verification is a 

long range goal … 
•  Which might be restricted to applications 

where the extra cost is justified 
•  We should try to design programming 

languages that help, rather than hinder, our 
ability to make progress in this area. 

•  We should continue research on the 
semantics of programming languages … 

•  And the ability to prove program correctness 
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Semantics 
• Next we’ll look at issues close to the syntax 

end, what some calls static semantics, and 
the technique of attribute grammars. 

• Then we’ll sketch three approaches to 
defining “deeper” semantics 
(1) Operational semantics 
(2) Axiomatic semantics 
(3) Denotational semantics 

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

• Static semantics covers some language features 
difficult or impossible to handle in a BNF/CFG 

•  It’s also a mechanism for building a parser that 
produces an abstract syntax tree of its input 

• Attribute grammars are one common technique 
• Categories attribute grammars can handle: 
- Context-free but cumbersome (e.g., type            

checking) 
- Non-context-free (e.g., variables must be            

declared before they are used) 

Static Semantics 
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•  Parse trees follow a grammar and usually have many nodes that 
are artifacts of how the grammar was written 

•  An abstract syntax tree (AST) eliminates useless structural nodes 
•  It uses nodes corresponding to constructs in the programming 

language and is easier to interpret or generate code from it 
•  Consider 1 + 2 + 3: 

Parse tree vs. abstract syntax tree 

int!

3!int!

2!int!

1!

e!

e! +! int!e!

e! +! int!e!

int!

parse tree 

1!

+!

e! int!+!

e! int!int!

2!

3!

an AST 

1!

+!

e!+!

2!

3!

another AST 
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Attribute Grammars 
• Attribute Grammars (AGs) were developed 

by Donald Knuth  in ~1968 
• Motivation: 

• CFGs can’t describe all of the syntax of 
programming languages 

• Additions to CFGs to annotate the parse 
tree with some “semantic” info 

• Primary value of AGs: 
• Static semantics specification 
• Compiler design (static semantics checking) 
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Attribute Grammar Example 
• Ada has this rule to describe procedure definitions: 

<proc>  => procedure <prName> <prBody> end <prName> ; 

• The name after procedure must be the same as the 
name after end 

• This is not possible to capture in a CFG (in practice) 
because there are too many names 

• Solution: annotate parse tree nodes with attributes and 
add a “semantic” rules or constraints to the syntactic 
rule in the grammar 
rule:	  	  	  	  <proc>  => procedure <prName>[1] <prBody> end <prName>[2] ; 
constraint:	  <prName>[1].string == <prName>[2].string 
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Attribute Grammars 

Def: An attribute grammar is a CFG 
G=(S,N,T,P) 

with the following additions: 
– For each grammar symbol x there is a set A(x) of 

attribute values 
– Each rule has a set of functions that define certain 

attributes of the non-terminals in the rule 
– Each rule has a (possibly empty) set of predicates 

to check for attribute consistency   

A Grammar is formally defined by 
specifying four components. 

•  S is the start symbol 
•  N is a set of non-terminal symbols 
•  T is a set of terminal symbols 
•  P is a set of productions or rules 
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Attribute Grammars 

• Let   X0 => X1 ... Xn  be a grammar rule 

• Functions of the form S(X0) = f(A(X1),...A(Xn) 
define synthesized attributes 
- i.e., attribute defined by a nodes children 

• Functions of the form I(Xj) = f(A(X0),…A(Xn)) 
for i <= j <= n define inherited attributes 
- i.e., attribute defined by parent and siblings 

•  Initially, there are intrinsic attributes on the 
leaves 
- i.e., attribute predefined 
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Example: expressions of the form  id + id 
• id's can be either int_type or real_type 

•  types of the two id's must be the same 

•  type of the expression must match its expected type 

BNF:  <expr> -> <var> + <var> 
      <var> -> id 

Attributes: 
  actual_type - synthesized for <var> and <expr> 

  expected_type - inherited for <expr>   

Attribute Grammars 
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Attribute Grammars 
Attribute Grammar: 

1. Syntax rule:  <expr> -> <var>[1] + <var>[2] 
    Semantic rules:  
     <expr>.actual_type ← <var>[1].actual_type 
  Predicate: !
       <var>[1].actual_type == <var>[2].actual_type 
       <expr>.expected_type == <expr>.actual_type 

2. Syntax rule:  <var> -> id 
 Semantic rule:!
  <var>.actual_type ← 
                  lookup_type (id, <var>) 

Compilers usually maintain a 
“symbol table” where they 
record the names of proce-
dures and variables along 
with type type information.  
Looking up this information 
in the symbol table is a com-
mon operation. 
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How are attribute values computed? 

• If all attributes were inherited, the tree 
could be decorated in top-down order 

• If all attributes were synthesized, the tree 
could be decorated in bottom-up order 

• In many cases, both kinds of attributes are 
used, and it is some combination of top-
down and bottom-up that must be used 

Attribute Grammars (continued) 
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Attribute Grammars (continued) 

Suppose we process the expression A+B 
using rule <expr> -> <var>[1] + <var>[2] 

<expr>.expected_type ← inherited from parent 
<var>[1].actual_type ← lookup (A, <var>[1]) 
<var>[2].actual_type ← lookup (B, <var>[2]) 
<var>[1].actual_type == <var>[2].actual_type 
<expr>.actual_type ← <var>[1].actual_type 
<expr>.actual_type == <expr>.expected_type 
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Attribute Grammar Summary 

•  AGs are a practical extension to CFGs that allow us to 
annotate the parse tree with information needed for 
semantic processing 
– e.g., interpretation or compilation 

•  We call the annotated tree an abstract syntax tree 
– It no longer just reflects the derivation 

•  AGs can move information from anywhere in abstract 
syntax tree to anywhere else in a controlled way 
– Needed for no-local syntactic dependencies (e.g., 

Ada example) and for semantics 
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Static vs. Dynamic Semantics 
• Attribute grammar is an example of 

static semantics (e.g., type checking) that don’t 
reason about how things change when a 
program is executed 

• Understanding what a program means often 
requires reasoning about how, for example, a 
variable’s value changes 

• Dynamic semantics tries to capture this 
– E.g., proving that an array index will never be out 

of its intended range 
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• No single widely acceptable notation or 
formalism for describing dynamic 
semantics 

• Here are three approaches we’ll briefly 
examine: 
– Operational semantics 
– Axiomatic semantics 
– Denotational semantics 

Dynamic Semantics 
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• Q: How might we define what expression in a 
language mean? 

• A: One approach is to give a general mechanism 
to translate a sentence in L into a set of sentences 
in another language or system that is well defined 

• For example: 
• Define the meaning of computer science terms by 

translating them in ordinary English 
• Define the meaning of English by showing how to 

translate into French 
• Define the meaning of French expression by 

translating into mathematical logic 

Dynamic Semantics 

turtles	  all	  the	  way	  down	  
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Operational Semantics 

•  Idea: describe the meaning of a program in 
language L by specifying how statements effect 
the state of a machine (simulated or actual) when 
executed. 

• The change in the state of the machine (memory, 
registers, stack, heap, etc.) defines the meaning of  
the statement 

• Similar in spirit to the notion of a Turing Machine 
and also used informally to explain higher-level 
constructs in terms of simpler ones. 
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Alan Turing and his Machine 
• The Turing machine is an abstract machine 

introduced in 1936 by Alan Turing 
– Alan Turing (1912 –54) was a British mathematician, logician, 

cryptographer, considered a father of modern computer science 
•  It can be used to give a 

mathematically precise 
definition of algorithm 
or 'mechanical procedure’ 

• Concept widely used in theo- 
retical computer science, 
especially in complexity 
theory and the theory of computation 
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Operational Semantics 

• This is a common technique 

• Here’s how we might explain the meaning of the 
for statement in C in terms of a simpler 
reference language: 

            c statement   operational semantics                    

for(e1;e2;e3)  e1; 
{<body>}   loop:  if e2=0 goto exit 

    <body> 
    e3; 
    goto loop 
   exit:    
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Operational Semantics 

• To use operational semantics for a high-level 
language,  a virtual machine in needed 

• A hardware pure interpreter is too expensive 
• A software pure interpreter also has 

problems: 
• The detailed characteristics of the particular 

computer makes actions hard to understand 
• Such a semantic definition would be 

machine-dependent 
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Operational Semantics 

A better alternative: a complete computer 
simulation 
• Build a translator (translates source code to the 

machine code of an idealized computer) 

• Build a simulator for the idealized computer 

Evaluation of operational semantics: 
• Good if used informally 

• Extremely complex if used formally (e.g. VDL) 
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Vienna Definition Language 

•  VDL was a language developed at  
IBM Vienna Labs as  a language 
for formal, algebraic definition via 
operational semantics.  

•  It was used to specify the semantics of PL/I 
•  See: The Vienna Definition Language, P. Wegner, 

ACM Comp Surveys 4(1):5-63 (Mar 1972) 
•  The VDL specification of PL/I was very large, 

very complicated, a remarkable technical 
accomplishment, and of little practical use.  
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The Lambda Calculus 
•  The first use of operational semantics was in 

the lambda calculus 
– A formal system designed to investigate function 

definition, function application and recursion  
– Introduced by Alonzo Church and Stephen Kleene 

in the 1930s 
•  The lambda calculus can be called the 

smallest universal programming language 
•  It’s widely used today as a target for defining 

the semantics of a programming language 

What’s a calculus, anyway? 

“A method of computation or 
calculation in a special notation (as 
of logic or symbolic logic)” -- 
Merriam-Webster 
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The Lambda Calculus 

•  The lambda calculus consists of a single 
transformation rule (variable substitution) and 
a single function definition scheme  

•  The lambda calculus is universal in the sense 
that any computable function can be expressed 
and evaluated using this formalism 

• We’ll revisit the lambda calculus later in the 
course 

•  The Lisp language is close to the lambda 
calculus model 
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The Lambda Calculus 

•  The lambda calculus  
– introduces variables ranging over values 
– defines functions by (lambda) abstracting 

over variables 
– applies functions to values 

•  Examples: 
simple expression: x + 1 
function that adds one to its arg: λx. x + 1 
applying it to 2: (λx. x + 1) 2 
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Operational Semantics Summary  

•  The basic idea is to define a language’s 
semantics in terms of a reference 
language, system or machine 

•  It’s use ranges from the theoretical (e.g., 
lambda calculus) to the practical (e.g., 
Java Virtual Machine) 
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Axiomatic Semantics 
• Based on formal logic (first order predicate calculus) 
• Original purpose: formal program verification 
• Approach: Define axioms and inference rules in logic 

for each statement type in the language (to allow 
transformations of expressions to other expressions) 

• The expressions are called assertions and are either  
• Preconditions: An assertion before a statement 

states the relationships and constraints among 
variables that are true at that point in execution 

• Postconditions: An assertion following a 
statement 
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Logic 101 
Propositional logic: 
Logical constants: true, false  
Propositional symbols: P, Q, S, ... that are either true or false 
Logical connectives: ∧ (and) , ∨ (or), ⇒ (implies), ⇔ (is equivalent), ¬ (not) 

which are defined by the truth tables below. 
Sentences are formed by combining propositional symbols, connectives and 

parentheses and are either true or false. e.g.: P∧Q ⇔ ¬ (¬P ∨ ¬Q) 
First order logic adds 
(1) Variables which can range over objects in the domain of discourse 
(2) Quantifiers including:  ∀ (forall) and ∃ (there exists) 
(3) Predicates to capture domain classes and relations 
Examples:  (∀p) (∀q) p∧q ⇔ ¬ (¬p ∨ ¬q) 

     ∀x prime(x) ⇒ ∃y prime(y) ∧ y>x 
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• Axiomatic semantics is based on Hoare Logic (after 
computer scientists Sir Tony Hoare) 

• Based on triples that describe how execution of a 
statement changes the state of the computation 

• Example: {P} S {Q} where 
- P is a logical statement of what’s true before executing S 
- Q is a logical expression describing what’s true after 

•  In general we can reason forward or backward 
- Given P and S determine Q 
- Given S and Q determine P 

• Concrete example: {x>0} x = x+1 {x>1}  

Axiomatic Semantics 
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A weakest precondition is the least restrictive 
precondition that will guarantee the postcondition 
Notation:   

  {P} Statement {Q} 
        precondition               postcondition 

Example: 

{?} a := b + 1  {a > 1} 

We often need to infer what the precondition must be for a 
given post-condition 

One possible precondition: {b>10} 
Another: {b>1} 
Weakest precondition: {b > 0} 

Axiomatic Semantics 
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• A weakest precondition is the least restrictive 
precondition that will guarantee the post-condition 

• There are an infinite number of possible 
preconditions P? that satisfy 

{P?} a := b + 1  {a > 1} 
•  Namely b>0, b>1, b>2, b>3, b>4, … 
•  The weakest precondition is one that logically is implied 

by all of the (other) preconditions 
•  b>1 => b>0 
•  b>2 => b>0 
•  b>3 => b>0 
•  … 

Weakest Precondition? 
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Axiomatic Semantics in Use 

Program proof process:  
• The post-condition for the whole program 

is the desired results   
• Work back through the program to the first 

statement 
• If the precondition on the first statement is 

the same as (or implied by) the program 
specification, the program is correct 
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Example: Assignment Statements 
Here’s how we might define a simple assignment 
statement of the form x := e in a programming 
language.  
• {Qx->E} x := E {Q} 
• Where Qx->E means the result of replacing all 

occurrences of x with E in Q 
So from 

{Q} a := b/2-1 {a<10} 
We can infer that the weakest precondition Q is 

b/2-1<1 which can be rewritten as or b<22  
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• The Rule of Consequence: 

   {P} S {Q},  P’ => P,  Q => Q’ 
                 {P'} S {Q'} 

• An inference rule for sequences 

for a sequence S1 ; S2: 

{P1} S1 {P2} 
{P2} S2 {P3}  

the inference rule is: 

 {P1} S1 {P2}, {P2} S2 {P3} 
                      {P1} S1; S2 {P3} 

Axiomatic Semantics 
A notation from 
symbolic logic for 
specifying a rule of 
inference with pre-
mise P and conse-
quence Q is 

 P  
Q 

e.g., modus ponens 
can be specified as: 
       P, P=>Q 
            Q 
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Conditions 
Here’s a rule for a conditional statement 

{B ∧ P} S1 {Q}, {¬Β ∧ P} S2 {Q} 
{P} if B then S1 else S2 {Q} 

And an example of its use for the statement 
 {P} if x>0 then y=y-1 else y=y+1 {y>0} 

So the weakest precondition P can be deduced as 
follows: 

The postcondition of S1 and S2 is Q. 

The weakest precondition of S1 is x>0 ∧ y>1 and for S2 is x<=0 ∧ 
y>-1 
The rule of consequence and the fact that y>1 ⇒ y>-1 supports the 
conclusion 
That the weakest precondition for the entire conditional is y>1 . 
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Conditional Example 
Suppose we have: 

{P} 
If x>0 then y=y-1 else y=y+1 
{y>0} 

Our rule 
{B ∧ P} S1 {Q}, {¬Β ∧ P} S2 {Q} 

{P} if B then S1 else S2 {Q} 
Consider the two cases: 

– x>0 and y>1 
– x<=0 and y>-1 

•  What is a (weakest) condition that implies both y>1 and y>-1  
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Conditional Example 

• What is a (weakest) condition that implies both 
y>1 and y>-1? 

• Well y>1 implies y>-1 
•  y>1 is the weakest condition that ensures that 

after the conditional is executed, y>0 will be 
true. 

• Our answer then is this:  
{y>1} 
If x>0 then y=y-1 else y=y+1 
{y>0} 
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Loops  
For the loop construct {P} while B do S end {Q} 
the inference rule is: 

         {I ∧ B}  S   {I}           _  
{I} while B do S {I ∧ ¬B} 

where I is the loop invariant, a proposition 
necessarily true throughout the loop’s 
execution 

•  I is true before the loop executes and also 
after the loop executes 

•  B is false after the loop executes 



CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc.   

A loop invariant I must meet the following conditions: 
1. P => I    (the loop invariant must be true initially)  

2. {I} B {I}    (evaluation of the Boolean must not change the validity of I) 

3. {I and B} S {I}    (I is not changed by executing the body of the loop) 

4. (I and (not B)) => Q     (if I is true and B is false, Q is implied) 

5. The loop terminates     (this can be difficult to prove) 

•  The loop invariant I is a weakened version of the  loop 
postcondition, and it is also a precondition. 

•  I must be weak enough to be satisfied prior to the beginning of 
the loop, but when combined with the loop exit condition, it 
must be strong enough to force the truth of the postcondition 

Loop Invariants 
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Evaluation of Axiomatic Semantics 

• Developing axioms or inference rules for 
all of  the statements in a language is 
difficult 

•  It is a good tool for correctness proofs, 
and an excellent framework for 
reasoning about programs 

•  It is much less useful for language users 
and compiler writers 
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• A technique for describing the meaning of 
programs in terms of mathematical functions on 
programs and program components.  

• Programs are translated into functions about 
which properties can be proved using the standard 
mathematical theory of functions, and especially 
domain theory.  

• Originally developed by Scott and Strachey 
(1970) and based on recursive function theory 

• The most abstract semantics description method 

Denotational Semantics 
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Denotational Semantics 

• The process of building a denotational 
specification for a language: 
1. Define a mathematical object for each 

language entity 
2. Define a function that maps instances of the 

language entities onto instances of the 
corresponding mathematical objects 

• The meaning of language constructs are defined 
by only the values of the program's variables 
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The difference between denotational and operational 
semantics: In operational semantics, the state changes are 
defined by coded algorithms; in denotational semantics, 
they are defined by rigorous mathematical functions 

•  The state of a program is the values of all its current 
variables 

          s = {<i1, v1>, <i2, v2>, …, <in, vn>} 

•  Let VARMAP be a function that, when given a variable 
name and a state, returns the current value of the variable 

         VARMAP(ij, s) = vj 

Denotational Semantics (continued) 
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Example: Decimal Numbers 

<dec_num> →  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
                          | <dec_num> (0|1|2|3|4|5|6|7|8|9) 

Mdec('0') = 0,  Mdec ('1') = 1, …,  Mdec ('9') = 9 
Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>) 
Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1 
    … 
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9 
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Expressions 
  Me(<expr>, s) Δ= 
    case <expr> of 
      <dec_num> => Mdec(<dec_num>, s) 
      <var> =>  
           if VARMAP(<var>, s) = undef 
                then error 
                else VARMAP(<var>, s) 
     <binary_expr> =>  
          if (Me(<binary_expr>.<left_expr>, s) = undef 
                OR Me(<binary_expr>.<right_expr>, s) = 
                              undef) 
               then error 

else 
   if (<binary_expr>.<operator> = ‘+’ then 
      Me(<binary_expr>.<left_expr>, s) +  
             Me(<binary_expr>.<right_expr>, s) 
    else Me(<binary_expr>.<left_expr>, s) *  
       Me(<binary_expr>.<right_expr>, s) 
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Assignment Statements 

  Ma(x := E, s) Δ= 
      if Me(E, s) = error 
         then error 
         else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>}, 
                 where for j = 1, 2, ..., n, 
                     vj’ = VARMAP(ij, s) if ij <> x 
                          = Me(E, s) if ij = x 
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  Ml(while B do L, s) Δ=  

     if Mb(B, s) = undef 

       then error 

       else if Mb(B, s) = false 

                  then s 

                  else if Msl(L, s) = error 

                              then error 

                              else Ml(while B do L, Msl(L, s)) 

Logical Pretest Loops 
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Logical Pretest Loops 

• The meaning of the loop is the value of the    
program variables after the statements in the loop   
have been executed the prescribed number of    
times, assuming there have been no errors 

•  In essence, the loop has been converted from 
iteration to recursion, where the recursive control   
is mathematically defined by other recursive state  
mapping functions 

• Recursion, when compared to iteration, is easier to 
describe with mathematical rigor  
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Evaluation of denotational semantics: 

• Can be used to prove the correctness of 
programs 

• Provides a rigorous way to think about 
programs 

• Can be an aid to language design 

• Has been used in compiler generation 
systems  

Denotational Semantics 
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Summary 

This lecture we covered the following 

• Backus-Naur Form and Context Free 
Grammars 

•   Syntax Graphs and Attribute Grammars 
•   Semantic Descriptions: Operational, 

Axiomatic and Denotational 


