

Some Preliminaries

- For the next several weeks we'll look at how one can define a programming language
- What is a language, anyway?
"Language is a system of gestures, grammar, signs, sounds, symbols, or words, which is used to represent and communicate concepts, ideas, meanings, and thoughts"
- Human language is a way to communicate representations from one (human) mind to another
- What about a programming language?

A way to communicate representations (e.g., of data or a procedure) between human minds and/or machines

Introduction

We usually break down the problem of defining a programming language into two parts

- defining the PL's syntax
- defining the PL's semantics

Syntax - the form or structure of the expressions, statements, and program units

Semantics - the meaning of the expressions, statements, and program units

Note: There is not always a clear boundary between the two

Why and How

Why? We want specifications for several communities:

- Other language designers
- Implementers
- Machines?
- Programmers (the users of the language)

How? One ways is via natural language descriptions (e.g., user's manuals, text books) but there are a number of more formal techniques for specifying the syntax and semantics

Syntax Overview

- Language preliminaries
- Context-free grammars and BNF
- Syntax diagrams

Introduction

A sentence is a string of characters over some alphabet (e.g., def addl (n): return $n+1$)

A language is a set of sentences
A lexeme is the lowest level syntactic unit of a language (e.g., *, add1, begin)

A token is a category of lexemes (e.g., identifier)
Formal approaches to describing syntax:

- Recognizers - used in compilers
- Generators - what we'll study

Lexical Structure of Programming Languages

- The structure of its lexemes (words or tokens)
-token is a category of lexeme
- The scanning phase (lexical analyser) collects characters into tokens
- Parsing phase (syntactic analyser) determines syntactic structure

Formal Grammar

- A (formal) grammar is a set of rules for strings in a formal language
- The rules describe how to form strings from the language's alphabet that are valid according to the language's syntax
- A grammar does not describe the meaning of the strings or what can be done with them in whatever context - only their form

Grammars

Context-Free Grammars

- Developed by Noam Chomsky in the mid-1950s.
- Language generators, meant to describe the syntax of natural languages.
- Define a class of languages called context-free languages.

Backus Normal/Naur Form (1959)

- Invented by John Backus to describe Algol 58 and refined by Peter Naur for Algol 60.
- BNF is equivalent to context-free grammars

NOAM CHOMSKY, MIT Institute Professor; Professor of Linguistics, Linguistic Theory, Syntax, Semantics, Philosophy of Language

- Chomsky \& Backus independently came up with equivalent formalisms for specifying the syntax of a language
- Backus focused on a practical way of specifying an artificial language, like Algol
- Chomsky made fundamental contributions to mathematical linguistics and was motivated by the study of human languages.

Six participants in the 1960 Algol conference in Paris. This was taken at the 1974 ACM conference on the history of programming languages. Top: John McCarthy, Fritz Bauer, Joe Wegstein. Bottom: John Backus, Peter Naur, Alan Perlis.

BNF (continued)

A metalanguage is a language used to describe another language.

In BNF, abstractions are used to represent classes of syntactic structures -- they act like syntactic variables (also called nonterminal symbols), e.g.

```
<while_stmt> ::= while <logic_expr> do <stmt>
```

This is a rule; it describes the structure of a while statement

BNF

- A rule has a left-hand side (LHS) which is a single non-terminal symbol and a right-hand side (RHS), one or more terminal or non-terminal symbols
- A grammar is a finite, nonempty set of rules
- A non-terminal symbol is "defined" by its rules.
- Multiple rules can be combined with the vertical-bar (|) symbol (read as "or")
- These two rules:

```
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>
```

are equivalent to this one:

```
<stmts> ::= <stmt> | <stmnt> ; <stmnts>
```


Non-terminals, pre-terminals \& terminals

- A non-terminal symbol is any symbol that is in the RHS of a rule. These represent abstractions in the language (e.g., if-then-else-statement in

$$
\begin{aligned}
& \text { <if-then-else-statement> ::= if <test> } \\
& \text { then <statement> else <statement> }
\end{aligned}
$$

- A terminal symbol is any symbol that is not on the LHS of a rule. AKA lexemes. These are the literal symbols that will appear in a program (e.g., if, then, else in rules above).
- A pre-terminal symbol is one that appears as a LHS of rule(s), but in every case, the RHSs consist of single terminal symbol, e.g., <digit> in

$$
\text { <digit> }::=0 \text { | } 1 \text { | } 2 \text { | } 3 \ldots 7 \text { |... } 8 \text { | } 9
$$

BNF

- Repetition is done with recursion
- E.g., Syntactic lists are described in BNF using recursion
- An <ident_list> is a sequence of one or more <ident>s separated by commas.
<ident_list> : := <ident> | <ident> , <ident_list>

BNF Example

Here is an example of a simple grammar for a subset of English
A sentence is noun phrase and verb phrase followed by a period.

$$
\begin{aligned}
& \text { <sentence> }::=\text { <nounPhrase> <verbPhrase> } \\
& \text { <nounPhrase> }::=\text { <article> <noun> } \\
& \text { <article> }::=a \mid \text { the } \\
& \text { <noun> }::=\operatorname{man} \mid \text { apple | worm | penguin } \\
& \text { <verbPhrase> }::=\text { <verb>|<verb><nounPhrase> } \\
& \text { <verb> }::=\text { eats | throws | sees | is }
\end{aligned}
$$

Derivations

- A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence consisting of just all terminal symbols
- It demonstrates, or proves that the derived sentence is "generated" by the grammar and is thus in the language that the grammar defines
- As an example, consider our baby English grammar

```
    <sentence> ::= <nounPhrase><verbPhrase>.
    <nounPhrase> ::= <article><noun>
    <article> ::= a | the
    <noun> ::= man | apple | worm | penguin
    <verbPhrase> ::= <verb> | <verb><nounPhrase>
    <verb> ::= eats | throws | sees | is
```


Derivation using BNF

Here is a derivation for "the man eats the apple."
<sentence> -> <nounPhrase><verbPhrase>.
<article><noun><verbPhrase>.
the<noun><verbPhrase>.
the man <verbPhrase>.
the man <verb><nounPhrase>.
the man eats <nounPhrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

Derivation

Every string of symbols in the derivation is a sentential form

A sentence is a sentential form that has only terminal symbols

A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded in the next step

A derivation may be either leftmost or rightmost or something else

Another BNF Example

```
<program> -> <stmts>
<stmts> -> <stmt>
    | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:
    <program> => <stmts>
                                    => <stmt>
                                    => <var> = <expr>
                                    => a = <expr>
                                    => a = <term> + <term>
                                    => a = <var> + <term>
                                    => a = b + <term>
                                    => a = b + const
```


Finite and Infinite languages

- A simple language may have a finite number of sentences
- The set of strings representing integers between $-10^{* *} 6$ and $+10^{* *} 6$ is a finite language
- A finite language can be defined by enumerating the sentences, but using a grammar might be much easier
- Most interesting languages have an infinite number of sentences

Is English a finite or infinite language?

- Assume we have a finite set of words
- Consider adding rules like the following to the previous example <sentence> : := <sentence><conj><sentence>.
<conj> ::= and | or | because
- Hint: Whenever you see recursion in a BNF it's likely that the language is infinite.
-When might it not be?
-The recursive rule might not be reachable.
There might be epsilons.

Parse Tree

A parse tree is a hierarchical representation of a derivation

Another Parse Tree

Grammar

- A grammar is ambiguous if and only if (iff) it generates a sentential form that has two or more distinct parse trees
- Ambiguous grammars are, in general, very undesirable in formal languages
- Can you guess why?
- We can eliminate ambiguity by revising the grammar

Ambiguous English Sentences

- I saw the man on the hill with a telescope
- Time flies like an arrow
- Fruit flies like a banana
- Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

An ambiguous grammar

Here is a simple grammar for expressions that is ambiguous

$$
\begin{aligned}
& \text { <e> -> <e> <op> <e> } \\
& \text { <e> -> 1|2|3 } \\
& \text { <op> -> +|-|*|/ }
\end{aligned}
$$

Fyi... In a programming language, an expression is some code that is evaluated and produces a value. A statement is code that is executed and does something but does not produce a value.

The sentence $1+2 * 3$ can lead to two different parse trees corresponding to $1+(2 * 3)$ and $(1+2) * 3$

Two derivations for 1+2*3

$$
\begin{aligned}
& <\mathbf{e}>-><e><\mathbf{e}><\text { e }> \\
& <\mathrm{e}>->1|2| 3 \\
& <\mathbf{o p}>->+|-|*||
\end{aligned}
$$

```
<e> -> <e> <op> <e>
    -> 1 <op> <e>
    -> 1 + <e>
    -> 1 + <e> <op> <e>
    -> 1 + 2 <op> <e>
    -> 1 + 2 * <e>
    -> 1 + 2 * 3
```



```
<e> -> <e> <op> <e>
    -> <e> <op> <e> <op> <e>
    -> 1 <op> <e> <op> <e>
    -> 1 + <e> <op> <e>
    -> 1 + 2 <op> <e>
    -> 1 + 2 * <e>
    -> 1 + 2 * 3
```


Two derivations for 1+2*3

$$
\begin{aligned}
& <\mathrm{e}>-><\mathrm{e}><\mathbf{o p}><\mathrm{e}> \\
& <\mathrm{e}>->1|2| 3 \\
& <\mathbf{o p}>->+|-|*||
\end{aligned}
$$

$$
\begin{gathered}
<e>~-><e><o p><e> \\
->1<o p><e> \\
->1+<e> \\
->1+<e><o p><e> \\
->1+2<o p><e> \\
->1+2 *<e> \\
->1+2 * 3
\end{gathered}
$$

$$
\begin{gathered}
<e>~ \\
-><e><o p><e> \\
-><e><o p><e><o p><e> \\
->1<o p><e><o p><e> \\
->1+<e><o p><e> \\
\\
->1+2<o p><e> \\
->1+2 *<e> \\
->1+2 * 3
\end{gathered}
$$

The leaves of the trees are terminals and correspond to the sentence

Two derivations for 1+2*3

$$
\begin{aligned}
& <e>-><e><\text { ep }><e> \\
& <e>->1|2| 3 \\
& <\mathbf{o p}>->+|-|*||
\end{aligned}
$$

Lower trees represent the way we think about the sentence 'meaning'

Operators

- The traditional operator notation introduces many problems.
- Operators are used in
- Prefix notation: Expression (* (+13) 2) in Lisp
- Infix notation: Expression $(1+3) * 2$ in Java
- Postfix notation: Increment foo ++ in C
- Operators can have one or more operands
- Increment in C is a one-operand operator: foo ++
- Subtraction in C is a two-operand operator: foo - bar
- Conditional expression in C is a three-operand operators: (foo $==3$? 0:1)

Operator notation

- So, how do we interpret expressions like
(a) $2+3+4$
(b) $2+3 * 4$
- While you might argue that it doesn't matter for (a), it can for different operators $(2 * * 3 * * 4)$ or when the limits of representation are hit (e.g., round off in numbers, e.g., $1+1+1+1+1+1+1+1+1+1+1+10^{* *} 6$)
- Concepts:
- Explaining rules in terms of operator precedence and associativity
- Realizing the rules in grammars

Operators: Precedence and Associativity

- Precedence and associativity deal with the evaluation order within expressions
- Precedence rules specify order in which operators of different precedence level are evaluated, e.g.: "*" Has a higher precedence that "+", so "*" groups more tightly than "+"
- What is the results of $4 * 5 * * 6$?
- A language's precedence hierarchy should match our intuitions, but the result's not always perfect, as in this Pascal example:
if $\mathrm{A}<\mathrm{B}$ and $\mathrm{C}<\mathrm{D}$ then $\mathrm{A}:=0$;
- Pascal relational operators have lowest precedence!
if $\mathrm{A}<\mathrm{B}$ and $\mathrm{C}<\mathrm{D}$ then $\mathrm{A}:=0$;

Operator Precedence: Precedence Table

$\left.\begin{array}{llll}\text { Fortran } & \text { Pascal } & \text { C } & \text { Ada } \\ \hline \hline & & ++,--(\text { post-inc., dec. })\end{array}\right]$

Operator Precedence: Precedence Table

\& (bit-wise and)			
- (bit-wise exclusive or)			
\| (bit-wise inclusive or)			
.and.	\&\& (logical and)	and, or, xor (logical operators)	
.or.	\|	(logical or)	
.eqv., .neqv .(logical comparisons)			
$\begin{aligned} & =,+=,-=, \quad *=, \quad /=, \%=, \gg= \\ & \ll=, \&=, ~ M=, \mid=\text { (assignment) } \end{aligned}$			
	, (sequencing)		

Operators: Associativity

- Associativity rules specify order in which operators of the same precedence level are evaluated
- Operators are typically either left associative or right associative.
- Left associativity is typical for,+- , * and /
- So $\mathrm{A}+\mathrm{B}+\mathrm{C}$
- Means: $(\mathrm{A}+\mathrm{B})+\mathrm{C}$
- And not: $\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- Does it matter?

Operators: Associativity

- For + and ${ }^{*}$ it doesn't matter in theory (though it can in practice) but for - and / it matters in theory, too.
- What should A-B-C mean?

$$
(A-B)-C \neq A-(B-C)
$$

- What is the results of $2 * * 3 * * 4$?
-2 ** $(3 * * 4)=2 * * 81=2417851639229258349412352$
$-(2 * * 3) * * 4=8 * * 4=256$
- Languages diverge on this case:
- In Fortran, ** associates from right-to-left, as in normally the case for mathematics
- In Ada, ** doesn't associate; you must write the previous expression as $2 * *(3 * * 4)$ to obtain the expected answer

Associativity in C

- In C, as in most languages, most of the operators associate left to right

$$
a+b+c=>(a+b)+c
$$

- The various assignment operators however associate right to left

$$
=+=-=*=/=\%=\gg=\ll=\&=\wedge=\mid=
$$

- Consider $\mathrm{a}+=\mathrm{b}+=\mathrm{c}$, which is interpreted as

$$
a+=(b+=c)
$$

- and not as

$$
(\mathrm{a}+=\mathrm{b})+=\mathrm{c}
$$

- Why?

Comment on example in Python

- In the last class I tried to do the the $\mathrm{C}++$ example $a+=b+=c$ in Python
- This did not work, even though Python does have the $+=$ assignment operator
- Why is this?

Comment on example in Python

- In the last class I tried to do the the $\mathrm{C}++$ example $a+=b+=c$ in Python
- This did not work, even though Python does have the $+=$ assignment operator
- Why is this?

Comment on example in Python

```
>>> a = b = 1
>>> print a,b
1 1
>>> a = (b = 2)
    File "<stdin>", line 1
        a = (b = 2)
SyntaxError: invalid syntax
>>> a
1
>>> a += 1 # Python has the += assignment operator
>>> a
2
>>> a += b += 1
    File "<stdin>", line 1
        a += b += 1
SyntaxError: invalid syntax
```

\# this is a special Python idiom and does \# what you would expect
\# but assignment is a statement and does \# not return a value.

```
# which works just as in other languages
# But this idiom is not supported
# and it is probably not a big loss
```


Precedence and associativity in Grammar

If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:

$$
\begin{aligned}
& \text { <expr> -> <expr> - <term> | <term> } \\
& \text { <term> -> <term> / const | const }
\end{aligned}
$$

Precedence and associativity in Grammar

Sentence: const - const / const

Grammar (continued)

Operator associativity can also be indicated by a grammar

An Expression Grammar

Here's a grammar to define simple arithmetic expressions over variables and numbers.

> Exp ::= num
> Exp $::=$ id
> Exp ::= UnOp Exp
> Exp := Exp BinOp Exp
> Exp ::= '(' Exp ')'
> UnOp ::= '+'
> UnOp ::= '-'
> BinOp ::= '+' | '-' |'*' | |/

> Here's another
> common notation variant where single quotes are used to indicate terminal symbols and unquoted symbols are taken
> as non-terminals.

A derivation

A derivation of $\mathrm{a}+\mathrm{b} * 2$ using the expression grammar:

$$
\begin{aligned}
& \operatorname{Exp}=>\quad / / \operatorname{Exp}::=\text { Exp BinOp Exp } \\
& \text { Exp BinOp Exp }=>\quad / / \operatorname{Exp}::=\text { id } \\
& \text { id BinOp Exp }=>\quad / / \text { BinOp }::=1+' \\
& \text { id }+\operatorname{Exp}=>\quad / / \operatorname{Exp}::=\operatorname{Exp} \text { BinOp Exp } \\
& \text { id }+\operatorname{Exp} \text { BinOp Exp }=>/ / \operatorname{Exp}::=\text { num } \\
& \text { id }+ \text { Exp BinOp num }=>/ / \operatorname{Exp}::=\text { id } \\
& \text { id + id BinOp num }=>\text { // BinOp : : = '*' } \\
& \text { id + id * num } \\
& \mathrm{a}+\mathrm{b} \text { * } 2
\end{aligned}
$$

A parse tree

A parse tree for $a+b * 2$:

Precedence

- Precedence refers to the order in which operations are evaluated
- Usual convention: exponents > mult, div > add, sub
- Deal with operations in categories: exponents, mulops, addops.
- A revised grammar that follows these conventions:

```
Exp ::= Exp AddOp Exp
Exp ::= Term
Term ::= Term MulOp Term
Term ::= Factor
Factor ::= '(' + Exp + ')'
Factor ::= num | id
AddOp : := '+' | '_'
MulOp ::= '*' '/'
```


Associativity

- Associativity refers to the order in which two of the same operation should be computed
- $3+4+5=(3+4)+5$, left associative (all BinOps)
$\cdot 3^{\wedge} 4^{\wedge} 5=3^{\wedge}\left(4^{\wedge} 5\right)$, right associative
- Conditionals right associate but have a wrinkle: an else clause associates with closest unmatched if
if a then if b then c else d
$=$ if a then (if b then c else d)

Adding associativity to the grammar

Adding associativity to the BinOp expression grammar

$$
\begin{array}{ll}
\operatorname{Exp} & ::=\text { Exp AddOp Term } \\
\text { Exp } & ::=\text { Term } \\
\text { Term } & ::=\text { Term MulOp Factor } \\
\text { Term } & ::=\text { Factor } \\
\text { Factor }::=\text { '(' Exp ')' } \\
\text { Factor }::=\text { num | id } \\
\text { AddOp }::='^{\prime} \mid \text { '-' } \\
\text { Mulop } & ::='^{\prime} \mid \text { '/' }
\end{array}
$$

Grammar

```
Exp \(::=\) Exp AddOp Term
Exp : : = Term
Term : : = Term MulOp Factor
Term ::= Factor
Factor : : = '('Exp ')'
Factor ::= num id
AddOp : : = '+' | ' '
MulOp ::= '*'| '/'
```


Parse tree

Derivation

```
Exp =>
Exp AddOp Term =>
Exp AddOp Exp AddOp Term =>
Term AddOp Exp AddOp Term =>
Factor AddOp Exp AddOp Term =>
Num AddOp Exp AddOp Term =>
Num + Exp AddOp Term =>
Num + Factor AddOp Term =>
Num + Num AddOp Term =>
Num + Num - Term =>
Num + Num - Factor =>
Num + Num - Num
```


Example: conditionals

- Most languages allow two conditional forms, with and without an else clause:
- if $x<0$ then $x=-x$
- if $x<0$ then $x=-x$ else $x=x+1$
- But we'll need to decide how to interpret:
- if $x<0$ then if $y<0 x=-1$ else $x=-2$
- To which if does the else clause attach?
- This is like the syntactic ambiguity in attachment of prepositional phrases in English
- the man near a cat with a hat

Example: conditionals

- All languages use standard rule to determine which if expression an else clause attaches to
- The rule:
- An else clause attaches to the nearest if to its left that does not yet have an else clause
- Example:
- if $x<0$ then if $y<0 x=-1$ else $x=-2$
- if $x<0$ then if $y<0 x=-1$ else $x=-2$

Example: conditionals

- Goal: to create a correct grammar for conditionals.
- It needs to be non-ambiguous and the precedence is else with nearest unmatched if

```
Statement ::= Conditional | 'whatever'
Conditional ::= 'if' test 'then' Statement 'else' Statement
Conditional ::= 'if' test 'then' Statement
```

- The grammar is ambiguous. The first Conditional allows unmatched ifs to be Conditionals
- Good: if test then (if test then whatever else whatever)
- Bad: if test then (if test then whatever) else whatever
- Goal: write a grammar that forces an else clause to attach to the nearest if w/o an else clause

Example: conditionals

The final unambiguous grammar

```
Statement ::= Matched | Unmatched
Matched ::= 'if' test 'then' Matched 'else' Matched
    | 'whatever'
Unmatched ::= 'if' test 'then' Statement
    | 'if' test 'then' Matched 'else' Unmatched
```


Syntactic Sugar

- Syntactic sugar: syntactic features designed to make code easier to read or write while alternatives exist
- Makes the language sweeter for humans to use: things can be expressed more clearly, concisely, or in an alternative style that some prefer
- Syntactic sugar can be removed from language without effecting what can be done
- All applications of the construct can be systematically replaced with equivalents that don't use it

Extended BNF

Syntactic sugar: doesn't extend the expressive power of the formalism, but does make it easier to use, i.e., more readable and more writable

- Optional parts are placed in brackets ([])
<proc_call> -> ident [(<expr_list>)]
- Put alternative parts of RHSs in parentheses and separate them with vertical bars
<term> -> <term> (+ | -) const
- Put repetitions (0 or more) in braces ($\}$)

$$
\text { <ident> -> letter }\{\text { letter | digit }\}
$$

BNF vs EBNF

BNF:

```
<expr> -> <expr> + <term>
    | <expr> - <term>
    | <term>
<term> -> <term> * <factor>
    | <term> / <factor>
    | <factor>
```

EBNF:

```
<expr> -> <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>}
```


Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and put the nonterminals in rectangles; connect with lines with arrowheads
e.g., Pascal type declarations

Provides an intuitive, graphical notation.

Parsing

- A grammar describes the strings of tokens that are syntactically legal in a PL
- A recogniser simply accepts or rejects strings.
- A generator produces sentences in the language described by the grammar
- A parser construct a derivation or parse tree for a sentence (if possible)
- Two common types of parsers are:
- bottom-up or data driven
- top-down or hypothesis driven
- A recursive descent parser is a way to implement a top-down parser that is particularly simple.

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary context free grammar is $\mathrm{O}\left(\mathrm{n}^{3}\right)$, e.g., it can take time proportional the cube of the number of symbols in the input. This is bad!
- If we constrain the grammar somewhat, we can always parse in linear time. This is good!
- Linear-time parsing
- LL parsers
» Recognize LL grammar
» Use a top-down strategy
- LR parsers
» Recognize LR grammar
» Use a bottom-up strategy
- LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
- LR(n) : Left to right, Right derivation, look ahead at most n symbols.

Parsing complexity

- How hard is the parsing task?
- Parsing an arbitrary context free grammar is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ in the worst case.
- E.g., it can take time proportional the cube of the number of symbols in the input
- So what?
- This is bad!

Parsing complexity

- If it takes t_{1} seconds to parse your C program with n lines of code, how long will it take to take if you make it twice as long?
$-\operatorname{time}(n)=\mathrm{t}_{1}, \operatorname{time}(2 \mathrm{n})=2^{3}{ }^{*}$ time (n)
-8 times longer
- Suppose v3 of your code is has 10 n lines?
- 10^{3} or 1000 times as long
- Windows Vista was said to have $\sim 50 \mathrm{M}$ lines of code

Linear complexity parsing

- Practical parsers have time complexity that is linear in the number of tokens, i.e., $O(n)$
- If v2.0 or your program is twice as long, it will take twice as long to parse
- This is achieved by modifying the grammar so it can be parsed more easily
- Linear-time parsing
- LL parsers
» Recognize LL grammar
» Use a top-down strategy
- LR parsers
» Recognize LR grammar
» Use a bottom-up strategy
- LL(n) : Left to right, Leftmost derivation, look ahead at most n symbols.
- LR(n) : Left to right, Right derivation, look ahead at most n symbols.

Recursive Decent Parsing

- Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all sentential forms that the nonterminal can generate
- The recursive descent parsing subprograms are built directly from the grammar rules
- Recursive descent parsers, like other topdown parsers, cannot be built from leftrecursive grammars (why not?)

Hierarchy of Linear Parsers

- Basic containment relationship
- All CFGs can be recognized by LR parser
- Only a subset of all the CFGs can be recognized by LL parsers

CFGs
LR parsing

Recursive Decent Parsing Example

Example: For the grammar:

$$
\text { <term> -> <factor> }\{(* \mid /)<\text { factor }>\}
$$

We could use the following recursive descent parsing subprogram (e.g., one in C)

```
void term() {
    factor(); /* parse first factor*/
    while (next_token == ast_code ||
        next_\overline{token == slas\overline{h}_code) {}
        lexical(); /* get next token */
        factor(); /* parse next factor */
    }
}
```


The

 Chomsky hierarchy| Turing
 machines | Phrase
 structure |
| :---: | :---: |
| Linear-bounded
 automata | Context-
 sensitive |
| Push-down
 automata | Context-free |
| Finite state
 automata | Regular |
| machines complex | grammars |

- The Chomsky hierarchy machines grammars has four types of languages and their associated grammars and machines.
-They form a strict hierarchy; that is, regular languages $<$ context-free languages $<$ context-sensitive languages $<$ recursively enumerable languages.
-The syntax of computer languages are usually describable by regular or context free languages.

Summary

- The syntax of a programming language is usually defined using BNF or a context free grammar
- In addition to defining what programs are syntactically legal, a grammar also encodes meaningful or useful abstractions (e.g., block of statements)
- Typical syntactic notions like operator precedence, associativity, sequences, optional statements, etc. can be encoded in grammars
- A parser is based on a grammar and takes an input string, does a derivation and produces a parse tree.

